10,373 research outputs found

    Minimizing internal speedup for performance guaranteed optical packet switches

    Get PDF
    Providing QoS guarantee for Internet services is very important It evokes the issue that packet switches should provide guaranteed performance (i.e. 100% throughput with bounded worst-case delay). Optical switching technology is widely considered as an excellent solution for packet switches in future networks. However, to achieve guaranteed performance in optical packet switches, an internal speedup is required due to the existence of reconfiguration overhead. How to reduce the internal speedup is the main concern for making these switches practical In this paper, we first derive the internal speedup S as a function of the number of switch configurations N S and the reconfiguration overhead δ, or S=f(N S,δ). We show that the recently proposed ADJUST algorithm is flawed. Based on the internal speedup function we derived, a new algorithm (ADAPTIVE), with time complexity of O((λ-l)N 2logN), is proposed to minimize S. © 2004 IEEE.published_or_final_versio

    Scheduling optical packet switches with minimum number of configurations

    Get PDF
    In order to achieve the minimum traffic delay in a performance guaranteed optical packet switch (OPS) with reconfiguration overhead, the switch fabric has to use the minimum number of configurations (i.e. N configurations where N is the switch size) for traffic scheduling. This requires a very high speedup in the switch fabric to compensate for the loss in scheduling efficiency. The high speedup requirement makes the idea of using N configurations (to schedule the traffic) impractical under current technology. In this paper, we propose a new scheduling algorithm called α i-SCALE to lower the speedup required. Compared with the existing MIN algorithm [5], α i- SCALE succeeds in pushing the speedup bound (i.e. worst-case speedup requirement) to a much lower level. For example, when N=200, the speedup bound required to compensate the loss in scheduling efficiency is 30.75 for MIN, whereas 23.45 is sufficient for our α i-SCALE. © 2005 IEEE.published_or_final_versio

    Monitoring cycle design for fast link failure detection in all-optical networks

    Get PDF
    Fast link failure detection in all-optical networks (AONs) can be achieved using monitoring cycles (m-cycles). An m-cycle is a loop-back optical connection of supervisory wavelengths with a dedicated monitor. Compared to the channel-based or link-based monitoring schemes, m-cycle based schemes require much less number of monitors. In this paper, we propose an ILP (Integer Linear Program) formulation for m-cycle design to minimize the network cost. Our contributions are two-fold: 1) non-simple m-cycles are enabled; and 2) an efficient tradeoff is allowed between the monitor cost and the bandwidth cost. Numerical results show that our algorithm outperforms existing algorithms with a significant performance gain. © 2007 IEEE.published_or_final_versionIEEE Global Telecommunications Conference (GLOBECOM '07), Washington, DC, USA, 26-30 November 2007 p. 2315-231

    On optimization of optical packet switches with reconfiguration overhead

    Get PDF
    Optical packet switching is one of the most promising technologies for carrying IP traffic over WDM optical networks. For optical packet switch (OPS) design, due to the reconfiguration overhead in the switch fabric, packet delay and speedup are two key factors to be considered. Existing scheduling algorithms, DOUBLE [4] and ADAPTIVE [5], make effective tradeoff between these two factors. In this paper, we show that the performance of both DOUBLE and ADAPTIVE, as well as their underlying OPS switch architecture, can be further optimized. Our proposed solutions are shown to effectively reduce both speedup and packet delay at the same time without incurring any extra cost. © 2005 IEEE.published_or_final_versio

    Traffic scheduling in non-blocking optical packet switches with minimum delay

    Get PDF
    For performance guaranteed OPS switches with reconfiguration overhead, it has been shown that packet delay can be minimized by using N switch configurations (where N is the switch size) to schedule the traffic. However, this usually involves an exorbitant speedup requirement, which makes it impractical under current technology. In this paper, a new minimum-delay scheduling algorithm QLEF (Quasi Largest-Entry-First) is proposed. We prove that QLEF pushes the required speedup bound to the lowest known level. As an example, when N=950, QLEF only requires a speedup of S schedule=21.33 instead of 42.25 for MIN [5] and 30.27 for α i-SCALE [8]. This gives a 50% improvement over MIN and 30% over α i-SCALE. © 2005 IEEE.published_or_final_versio

    ILP-based design of survivable broadcast trees

    Get PDF
    Proceedings of the IEEE Workshop on High Performance Switching and Routing, 2009, p. 1-6We study survivable broadcast in high-speed networks against a single link/node failure. We follow the classic approach of blue/red tree [1] to construct a pair of spanning trees (i.e. a blue tree and a red tree) such that the connectivity between the root and an arbitrary node is ensured (via at least one tree) in the presence of a single link/node failure. To ensure that the blue and red trees are constructed in a cost-efficient way, heuristic algorithms have been designed to minimize the cost involved in tree construction. In this paper, we tackle the same problem but resorting to Integer Linear Programming (ILP) for optimal solutions. Two efficient ILPs are formulated, one for protecting against single link failure (MinCost-E) and the other for node failure (MinCost-V). Numerical results show that our ILPs can generate optimal solutions in relatively short amount of time. As compared with the existing heuristic algorithms, we observe a significant improvement in performance. © 2009 IEEE.published_or_final_versio

    VLSI macromodeling and signal integrity analysis via digital signal processing techniques

    Get PDF
    Linear macromodeling has been applied to high-frequency circuit simulations to accelerate the global interconnect system simulation process. By approximating tabulated structure response data, reduced macromodels can be generated. However, conventional macromodeling approaches suffer from numerical robustness and convergence problems. This paper aims to apply digital signal processing techniques to facilitate the macromodeling process. Besides improving the existing widely adopted framework (called VFz) through introducing a robust discrete-time domain (z-domain) computation, alternative macromodeling methodology (called VISA) has also been developed, which significantly simplifies the computation procedure. Furthermore, universal pre-processing technique (frequency warping) is introduced for a numerically favorable computation of the macromodeling process. These techniques have been shown to significantly improve the robustness and convergence of the modeling process.postprintProceedings of the International MultiConference of Engineers and Computer Scientists 2011 (IMECS 2011), Hong Kong, 16-18 March 2011. In Lecture Notes in Engineering and Computer Science, 2011, v. 2188-2189 n. 2, p. 1031-103

    Efficient channel borrowing strategy for real-time services in multimedia wireless networks

    Get PDF
    An efficient resource sharing strategy is proposed for multimedia wireless networks. Assume the channel resource in a wireless system is partitioned into two sets: one for voice calls and one for video calls. In the proposed channel borrowing strategy, voice calls can borrow channels from those pre-allocated to video calls temporarily when all voice channels are busy. A threshold type decision policy is designed such that the channel borrowing request will be granted only if the quality of service (QoS) requirement on video call blocking will not be violated during the duration of channel lending. An analytical model is constructed for evaluating the performance of the channel borrowing strategy in a simplified wireless system and is verified by computer simulations. We found that the proposed channel borrowing scheme can significantly reduce the voice call blocking probability while the increase in video call blocking probability is insignificant.published_or_final_versio

    ILP formulations for p-cycle design without candidate cycle enumeration

    Get PDF
    The concept of p-cycle (preconfigured protection cycle) allows fast and efficient span protection in wavelength division multiplexing (WDM) mesh networks. To design p-cycles for a given network, conventional algorithms need to enumerate cycles in the network to form a candidate set, and then use an integer linear program (ILP) to find a set of p-cycles from the candidate set. Because the size of the candidate set increases exponentially with the network size, candidate cycle enumeration introduces a huge number of ILP variables and slows down the optimization process. In this paper, we focus on p-cycle design without candidate cycle enumeration. Three ILPs for solving the problem of spare capacity placement (SCP) are first formulated. They are based on recursion, flow conservation, and cycle exclusion, respectively. We show that the number of ILP variables/constraints in our cycle exclusion approach only increases linearly with the network size. Then, based on cycle exclusion, we formulate an ILP for solving the joint capacity placement (JCP) problem. Numerical results show that our ILPs are very efficient in generating p-cycle solutions. © 2009 IEEE.published_or_final_versio

    Optimal control of nonlinear system for generator bidding in deregulated power markets

    Get PDF
    In this paper, considering generator's long-term optimization behavior, the generator bidding problem is studied using optimal control theory. In particular, the system demand is treated as a periodic function, and the competition process is then modeled as a dynamic, nonlinear and feedback system with periodic parameters, where the publicly known market clearing price (MCP) is the system output and the feedback signal, and supplier's outputs are the state variables. A software package MSIER3 for numerically solving the general optimal control problem is used for simulation. The performance of the optimal control is investigated, and a sensitivity analysis of system parameters is done through simulation. ©2005 IEEE.published_or_final_versio
    • …
    corecore