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Abstract─In this paper, considering generator’s long-term 
optimization behavior, the generator bidding problem is 
studied using optimal control theory. In particular, the 
system demand is treated as a periodic function, and the 
competition process is then modeled as a dynamic,  
nonlinear and feedback system with periodic parameters, 
where the publicly known market clearing price (MCP) is 
the system output and the feedback signal, and supplier’s 
outputs are the state variables. A software package MSIER3 
for numerically solving the general optimal control problem 
is used for simulation. The performance of the optimal 
control is investigated, and a sensitivity analysis of system 
parameters is done through simulation. 
Index terms ─ Power markets, Nonlinear system with 
periodic parameters, Optimal control, Sensitivity analysis  
 
 

I. INTRODUCTION1 

N deregulated power markets, the generation 
dispatching is determined by market mechanism rather 

than the centralized optimization. It is well known that, 
duo to the market barriers of long period construction and 
huge capital investment, the deregulated markets are 
usually oligopoly, and individual supplier (generator) 
holds some market power and can manipulate the market 
price in some extent through the strategic behaviors. In 
recent years, the issues on how to optimally exploit and 
utilize the market power either explicitly or implicitly 
(which is also called as the problem of strategic bidding 
or optimal bidding) are widely addressed. Lots of work 
has been reported, and many optimal algorithms have 
been applied, such as the discrete stochastic optimization 
trough Markov decision process [1], the stochastic 
optimization with gene algorithm and Monte Carlo 
simulation [2], the ordinal optimization[3], the Largrangian 
relaxation and stochastic dynamic programming[4], and 
etc. On the other hand, the generator bidding can be 
modeled as a supplier game, and the game-theory based 
methods have been widely applied to study generators’ 
strategic behaviors and analyze the Nash equilibrium of 
deregulated power markets, such as[5] [6][7], and etc.  

However, they all consider the hourly markets as 
independent, i.e., bidding is based on myopic behaviors or 
short-term maximization. The system demand has more 
or less predictable daily variation. Such temporal effect 
makes the market dynamic and therefore viewing the 
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competition process as a dynamic feedback system 
provides a superior model. 

In this paper, we formulate the generator bidding 
problem in deregulated power markets using optimal 
control theory. The system demand is treated as a periodic 
function, and the competition process is then modeled as 
a dynamic nonlinear system with periodic parameters, 
where the publicly known market clearing price is the 
system output and the system feedback signal, and 
supplier’s outputs are the state variables. A software 
package MSIER3 for numerically solving the general 
optimal control problem is used for the simulation. The 
performance of the optimal control is investigated. Also a 
sensitivity of analysis of system parameters is done 
through simulation, and some interesting findings are 
given. 

The paper is organized as follows. In section II, the 
generator bidding process in deregulated power markets is 
modeled as a dynamic, nonlinear and feedback system 
with periodic parameters. Then in section III the general 
idea of optimal control application is presented. The 
numerical simulation and the sensitivity analysis are 
given in section IV with conclusions in section V. 

II. A DYNAMIC, NONLINEAR AND FEEDBACK 
SYSTEM WITH PERIODIC PARAMETERS 

In this section, the generator bidding process will be 
modeled as a dynamic, nonlinear and feedback system 
with periodic parameters. At first, some assumptions are 
needed for our explicit mathematical formulation. 

2.1 Assumption of supplier’s  cost function 

   The supplier’s cost function is assumed to be quadratic: 

  ,,1   ,
2

1
)( 2 niqcqbaqCost iiiiiii L=++=        (1) 

Where the coefficients ( )iii cba ,, are all positive.  

2.2 Periodic system demand  

The system hourly demand function is assumed to be 
linear: 

( ) ( ) ( ) ( )tptbtatD ˆˆ −=                           (2) 

    For the demand function is down-sloping, thus ( ) 0ˆ >tb . 
The corresponding inverse demand function is: 

     ( ) ( ) ( ) ( )tDtftetp −=                          (3) 
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 The system demand varies across hours of a day. Over 
different days, there is notable periodicity. For example, 
the demand for a specified hour of a day is almost the 
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same with the one of the same hour in another day. 
Suppose that this period is T (GenerallyT is 24 hour), we 
have: 
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For the non-storability of power energy, the market 
balancing condition is: 
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2.3 A Dynamic adjustment process 

In the hourly bidding electricity spot markets, the 
suppliers (generators) submit their hourly bids for 
generation dispatching to the ISO (Independent System 
Operator), then based on the submitted bids and the 
demand function, ISO will determine the MCP (market 
clearing price) and the scheduled generation for 
individual supplier[8].  

After the market is cleared, individual supplier knows 
the publicized MCP and his scheduled generation, then in 
the next round of bidding (hourly-based bid), based on 
above information, he will adjust his generation bid to 
maximize the profits. Therefore, the bidding process can 
be modeled as a dynamic feedback system, where the 
feedback signal is the MCP. Figure 1 shows the general 
idea of such dynamic feedback system: 

 
Figure 1 Diagram of dynamic feedback system 

In figure 1, there are three boxes, where the 
generation decision box is for supplier to make the 
generation bid decision, and the market clearing box is to 
clear the market and determine the market clearing price 
(MCP) which is to balance the total supply and the system 
demand, the market information box means to publish the 
market clearing results (such as the MCP and the 
individual dispatched generation). 

Note that the box of generation decision process can 
be very complex for various decision strategies can be 
used. For the current study, a dynamic nonlinear 
adjustment process based on the first order condition for 
optimality will be proposed in the following. 

Supplier’s hourly profit function is given as the 
difference between the revenue and the cost: 

 ( )iiii qCostpq −=π                                (6) 
Then from the first order condition for optimality of 

equation (6), it is rational to assume that supplier’s 
dynamic response can be described by: 
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Where iλ is a factor representing the speed of adjustment 
or the preference of adjustment intensity of supplier i. 
Equation (7) also indicates that suppliers will adjust their 
hourly outputs in the direction of profit increasing. 
    Through the help of the well-known Conjectural 
Variation (CV) model in game theory[9][10], together with 
(1) and (3), equation (7) can be written as: 
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And the corresponding difference equation: 
[ ] [ ] [ ] [ ]( ) [ ] [ ]( )( ) [ ]

[ ] [ ] [ ]( )( ) [ ] [ ] [ ] [ ]
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−−++++−=

++−++−=+

∑
≠

i
ij

jiiiii

iiiiiiii

btqtftetqctCVtftf

tqtqcbtqtCVtftptq

λλ

λ

121

111

(9) 

Where
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≠= is called ‘conjecture variation’, 

which is the effect on the total quantity output by all other 
players caused by the change of supplier i ’s change. The 
definition would suggest that 
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numerical problem when [ ] [ ]( )1−− tqtq ii  is close to zero 
as the limit is achieved. In reality, CV is the player’s 
guess of its effect on others. We could model the player’s 
guess of CV is updated by observing the error term 
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Where ( )10 ≤≤ ii αα is a decay factor, and ( )0>ii ββ an 

updating factor; [ ] [ ]∑ ∑
≠ ≠

−−
ij ij

jj tqtq 1  is the true output 

adjustment of rival suppliers between two consecutive 
times, while [ ] [ ] [ ]( )1−− tqtqtCV iii  is the expected output 
adjustment. 

Note that the advantage of above formulation is that 
only the information of total dispatched quantity Q is 

needed, for ( [ ] [ ]∑ ∑
≠ ≠

−−
ij ij

jj tqtq 1  can be derived as 



[ ] [ ]( ) [ ] [ ]( )11 −−−−− tqtqtQtQ ii  , or only the information 

of market price p is needed, for we have 

[ ] [ ] [ ] [ ] [ ]tptbtatDtQ ˆˆ −== . Moreover, the above model 
has a better property of stability than other CV models. 
Further study on the stability of above model is out of this 
paper scope, and will not be addressed here. 

III. FORMULATION OF OPTIMAL CONTROL 

Although with (9), the bidding process in deregulated 
power markets are modeled as a dynamic, nonlinear and 
feedback system, the inherited behavior is still myopic, 
i.e., the individual supplier only makes the short-term 
optimization or only concerns the instantaneous profits 
and the impact of current decision on the future profits is 
ignored. For rationality, the long term optimization over a 
planning period should be considered. It is well-known 
that in a dynamic system, the natural way to do the long-
term optimization is the optimal control. Unfortunately, 
no prior literature work has been reported. 

Aiming for this, this paper presents a pioneer work to 
investigate the application of optimal control and study its 
performance. Without loss of generality, assume that 
there is a smart supplier (supplier n ) who will adopt the 
optimal control strategy for maximizing the aggregate 
profits over a long period time, while other suppliers still 
make the short-term optimization and will follow the 
dynamic adjustment process (9). Moreover, assume that 
the supplier with optimal control has a perfect estimation 
of the rivals’ adjustment processes. Figure 2 shows the 
general idea about the application of optimal control for 
the generator bidding in deregulated power markets.  

 
Figure 2 Diagram of optimal control application for the 

generator bidding 

To formulate an optimal control problem for the 
generator bidding in power markets, we need the  
objective function, the system state equation and the 
system output equation, given in follows. 

 (1)Objective function:  

Supplier n  makes the long-term optimization and the 
objective is: 
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   (2)System state equation: 

The estimation of rivals’ generation decision process: 
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Note that the subscript ( )n− means supplier n ’s 
aggregated rival. 

(3)System output equation: 

[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]( )tqtqtftetDtftetp nn −+−=−=    (13) 

(4) Constraints on control variable: 

The generation capacity constraints: 
                      [ ] max,min, nnn qtqq ≤≤                           (14) 

Above equation (11), (12), (13) and (14) consist of 
our optimal control formulation. For an optimal control 
problem, the Pontryagin maximum principle will give the 
necessary conditions for optimality [11]. However, for the 
above optimal control problem in a nonlinear system, it 
seems impossible to obtain the analytical solution of 
optimal control rule. Fortunately, there is a unified 
approach to numerically solve the optimal control 
problem with all kinds of constraints [11], and a software 
package MISER3 has come out and can be used to 
numerically solve the above optimal control problem. 

IV. NUMERICAL RESULTS 

The cost function of market supplier is assumed to 
be: 

 001.0
2

1
5.110)( 2qqqCost ++=              (15) 

To demonstrate the advantage of optimal control, the 
California power real load data is used in the simulations. 
The following figures show the real unconstrained 
demand data of California power market on 16th~20th 
April 1998. 

 
Figure 3 Unconstrained market price on 16th, April 1998 

 
Figure 4 Unconstrained scheduled quantity 

From above figures, it is clear that there system demand 
has a notable periodicity. Generally, the system demand 
can be modeled by a linear function with periodic 
parameters (i.e.,equation(2)).The periodic function 



requires that [ ] [ ]24ˆˆ += tata  and [ ] [ ]24ˆˆ += tbtb .With the 
data in above figures, the demand function can be 
calculated, also the inverse demand function (3). The 

value of parameter ( )ba ˆ,ˆ   in a period is given here: 

â ={36689, 42909, 46535, 45699, 40674, 33125, 36803,  
39367, 40452, 41704, 42249, 42309, 42430,42633, 42460, 
42136, 40625, 39490, 39944, 42260, 42928, 41167    
37473,  37643} ; 

b̂ ={1062, 1781, 2204, 2114,  1537,  621, 647, 685, 709,  
723,  704,  687,  705,  719, 731, 749, 734, 721, 735, 724 
733, 747,  672, 1098}. The value of inverse demand 
function parameter ( )fe,  can be easily calculated and not 
given here.    

 (1) Results from CV competition process 

For simplicity, assume there are two symmetrical 
suppliers in the market and both of them will follow the 
CV competition process (9) With the initial condition 

( ) 00 =iCV ( )2,1=i , ( ) ( )( )87010,87110 21 == qq ,the 

parameters ( )( )2,10001.0,9.0,60 ==== iiii βαλ , the 
cost function (15) and the above demand function, 
equation (9) is used for forward iteration to obtain the 
suppliers’ outputs and the market clearing price. For the 
system parameters are periodic, it is not surprising that 
the periodic solution of suppliers’ outputs is repeated after 
a short time. To save the space, the details are not given.  

Then suppliers’ profits can be obtained with equation 
(6). And supplier 1’s aggregate profits in a steady period 

is given as CV
1π =4432200($). 

(2) Results from optimal control 

     Now assume that supplier 2 still follows the CV 
competition process (9) with the parameter given above, 
while supplier 1 adopts the optimal control with a long 
planning period (such as 216 hours). MISER3 is used to 
obtain the suppliers’ outputs. Figure 5 shows the 
suppliers’ output trajectories: 

 
Figure 5 Trajectory of suppliers’ outputs:    (Supplier 1--optimal 

control, Supplier 2--CV) 

It is also interesting to find that after a period, the periodic 
solution of suppliers’ outputs is repeated. 

With the above generation outputs and the above 
inverse demand function, the market clearing price p can 
be calculated, and then the suppliers’ profits. Now with 
supplier 1 adopting the optimal control and supplier 2 
following the CV process (9), supplier 1’s aggregate 

profit in a steady period is given as OC
1π =4606800 ($). 

Compared the results from CV process, the profit increase 

is CVOC
111 πππ −=∆ =174600($), and the relative percent 

is 3.94% (4606800-4432200)/4432200=3.94%).It is found 
that optimal control has a better performance over the CV 
process. This result is not surprising, for the one with 
optimal control makes the long term optimization. 

(3) Sensitivity analysis of optimal control 

      It is easy to understand that the system parameters, 

such as the demand function coefficients ( )ba ˆ,ˆ  , the 
production cost function and the number of market 
suppliers, will influence the performance of optimal 

control (i.e., CVOC
111 πππ −=∆ and

( )
CV

CVOC

1

11

π
ππ −

). To 

demonstrate such kind of influences caused by the 
variation of system parameters, one way is to do the 
sensitivity analysis through simulation. In what follows, 
the sensitivity analysis of demand function coefficients 

(i.e., ( )ba ˆ,ˆ ), marginal cost function slope (i.e., ic ), and the 

number of market suppliers (i.e., n ) is given. Doing so, 
the respective parameter is scaled up or down with other 
parameters unchanged, and then with the simulation by 
MISER3, the corresponding suppliers’ outputs can be 
obtained. After that, supplier 1’s aggregate profits in a 

steady period (i.e., OC
1π ) can be calculated, and then 

compare the results with the corresponding one (i.e., CV
1π ) 

from CV process, the percent of profit increase (i.e., 

( )
CV

CVOC

1

11

π
ππ −

) and profits difference (i.e., 

CVOC
111 πππ −=∆  ). Figure 6 shows the percent of 

relative profit increase w.r.t. the system parameter 
respectively. 

 
(a)                                                     (b) 

 
(c)                                               (d) 

Figure 6 Percent of profit increase w.r.t. scale of: (a) marginal 
cost function slope; (b) demand function slope; (c) demand 
function interception; (d) number of suppliers with CV 
competition process. 



Figure 7 shows the profit difference wr.t system 
parameters respectively.  

 
                 (a)                                                  (b) 

 
                   (c)                                               (d) 
Figure 7 Profit difference w.r.t. scale of: (a) marginal cost 
function slope; (b) demand function slope; (c) demand function 
interception; (d) number of suppliers with CV competition 
process. 

The percent of profit increase and the profit difference 
measure the superiority of optimal control. If both of 
them are rather small, we say that the performance of 
optima control is not good, otherwise, the performance is 
good. From the above simulation results, we can conclude 
that: 

(1) With the marginal cost function slope scaling up, 
the superiority of optimal control will deteriorate, 
i.e., more expensive the generation production, less 
beneficial the optimal control  

(2) With the demand function slope scaling up or more 
elastic the system demand, the superiority of 
optimal control will deteriorate, which means that 
more elastic the demand, less beneficial the optimal 
control. 

(3) With the demand function interception scaling up, 
more better the performance of optimal control, 
which means that more system demand, more 
beneficial to apply the optimal control. 

(4) More suppliers in the market using CV competition 
process, more better performance the optimal 
control, which means that more rival suppliers, 
more beneficial to apply the optimal control. 

By the way, it should be pointed out that that supplier 2 
who always follows the CV competition process (9) will 
suffer the profit loss, after supplier 1 switches to the 
optimal control from the CV process (9). 

V. CONCLUSIONS 

Focusing on the market dynamics and suppliers 
(generator) long-term optimization behavior, this paper 
presents a pioneer study about the generator bidding in 
deregulated power markets using optimal control. In 
particular, due to the periodic variation of system demand, 
the generator bidding process is modeled as a dynamic, 
nonlinear and feedback system. Assuming that there is 

one smart supplier who will make the long-term 
optimization, and taking other suppliers’ outputs as 
system state variables and the market clearing price as the 
system output, an optimal control problem is formulated. 
Through the help of a software package MISER3, the 
simulation is done and a sensitivity analysis is given to 
investigate the performance of optimal control. Some 
interesting findings are given.   The work of this paper 
can shed lights for the further investigations. 
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