
Title Scheduling optical packet switches with minimum number of
configurations

Author(s) Wu, B; Yeung, KL

Citation Ieee International Conference On Communications, 2005, v. 3, p.
1830-1835

Issued Date 2005

URL http://hdl.handle.net/10722/54059

Rights Creative Commons: Attribution 3.0 Hong Kong License

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HKU Scholars Hub

https://core.ac.uk/display/37890573?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Scheduling Optical Packet Switches with Minimum
Number of Configurations

Bin Wu and Kwan L. Yeung
Dept. of Electrical and Electronic Engineering

The University of Hong Kong
Pokfulam, Hong Kong

E-mail: {binwu, kyeung}@eee.hku.hk

Abstract—In order to achieve the minimum traffic delay in a
performance guaranteed optical packet switch (OPS) with
reconfiguration overhead, the switch fabric has to use the
minimum number of configurations (i.e. N configurations where N
is the switch size) for traffic scheduling. This requires a very high
speedup in the switch fabric to compensate for the loss in
scheduling efficiency. The high speedup requirement makes the
idea of using N configurations (to schedule the traffic) impractical
under current technology. In this paper, we propose a new
scheduling algorithm called αi-SCALE to lower the speedup
required. Compared with the existing MIN algorithm [5], αi-
SCALE succeeds in pushing the speedup bound (i.e. worst-case
speedup requirement) to a much lower level. For example, when
N=200, the speedup bound required to compensate the loss in
scheduling efficiency is 30.75 for MIN, whereas 23.45 is sufficient
for our αi-SCALE.

Keywords-Optical packet switch(OPS); speedup; performance
guaranteed scheduling; reconfiguration overhead.

I. INTRODUCTION
The rapid progress on IP and WDM research has resulted in

a coalescence of these two technologies, leading to strong and
wide interests in optical packet switches (OPS). OPS can offer
many advantages at relatively low cost, such as scalability, high
bandwidth utilization, high line-rate and low power
consumption. Despite of the recent achievements on optical
switching technologies [1-3], a major implementation hurdle of
OPS is its relatively large reconfiguration overhead, which is
the amount of idle time required to change the OPS
configuration state because of some time-consuming operations
involved, such as mechanical settling and synchronization.

Lying in the core of an optical packet switch is the packet
scheduling algorithm. Following the approach of batch-based
time slot assignment (TSA), many efficient algorithms, namely,
EXACT [5,7], DOUBLE [5], MIN [5] and ADAPTIVE [6], are
designed for packet scheduling. With the batch-based TSA,
incoming packets are periodically (say, every T time slots, i.e.
batch size = T) accumulated at the input ports of an OPS to form
a traffic matrix C(T). Then a scheduling algorithm (such as any
one above) is used to determine a set of switch configurations
for forwarding the collected packets to the output ports. If all the
packets in C(T) can be forwarded to their corresponding output
ports within a bounded (i.e. worst-case) delay, the resulting OPS
is called a performance guaranteed OPS, and the corresponding
algorithm is called a performance guaranteed scheduling

algorithm. Notably, existing algorithms, EXACT, DOUBLE,
MIN and ADAPTIVE, all fall into this category. They differ in
requiring different number of configurations to schedule the
traffic matrix.

To realize a performance guaranteed OPS, the OPS switch
fabric, which is responsible for the actual delivery of packets
from input ports to output ports, must operate at a higher speed
than each individual input/output line. This speedup is used to
compensate for the idle time due to switch reconfiguration, and
the possible loss of scheduling efficiency due to a particular
scheduler implementation [4-6] (also refer to Section II).
Therefore, the worst-case speedup requirement of a performance
guaranteed OPS (i.e. speedup bound) depends on the scheduling
algorithm adopted.

Because each reconfiguration is associated with an overhead,
scheduling OPS traffic with minimum number of configurations
can minimize traffic delay. For performance guaranteed OPS, N
(where N is the switch size) is the minimum number of
configurations required. This is because an N×N traffic matrix
C(T) has N2 entries, and each configuration can cover at most N
of them [5]. So, at least N configurations are needed. On the
other hand, as pointed out in [5,6], using less number of
configurations makes the scheduling more inefficient (i.e. the
packet transmission in each configuration cannot fully utilize the
available switch bandwidth), and thus requires a higher switch
fabric speedup than algorithms using more configurations.

Among all the proposed performance guaranteed scheduling
algorithms [5-7], MIN [5] has the unique advantage of providing
the minimum bounded traffic delay because it requires only N
configurations for any traffic matrix C(T). But, as discussed
above, the speedup required by MIN is extremely high, and
seems to be prohibitive under current technology.

Obviously, scheduling OPS traffic with the minimum
number of N configurations can be practical only if some new
scheduling algorithm with lower speedup bound is available, or
the current difficulties of high speedup implementation are
overcome. In this paper, we put our effort on designing a more
efficient algorithm than MIN. The new scheduling algorithm we
proposed is called αi-SCALE. We show that for small and
medium size optical packet switches (N<100), αi-SCALE
complements the performance of MIN, requiring a lower
speedup in roughly half of the switch size range. When switch
size is large, e.g. N=200, the speedup bound required to
compensate for the inefficient scheduling is 30.75 for MIN,

This work was supported by Competitive Earmarked Research Grant
HKU 7048/02E.

18300-7803-8938-7/05/$20.00 (C) 2005 IEEE

whereas 23.45 is sufficient for our αi-SCALE. Besides, αi-
SCALE provides a new matrix decomposition method using N
permutation matrices, which can be useful for future research in
this area.

II. ARCHITECTURE
The same OPS switch architecture as in [4-6] is assumed in

our work. In this architecture, batch-based TSA approach is
applied to determine a set of N configurations to deliver the
collected packets. Fig. 1 shows the scheduling procedure in four
stages. In Stage 1, incoming packets are accumulated in the
input buffers over T time slots to construct the traffic matrix
C(T). Each entry cij of C(T) denotes the number of packets
received at input i and destined to output j. Assume all the line
sums (either row or column sum) of C(T) are not larger than T.
The scheduling algorithm takes H time slots in Stage 2 to
generate N configurations P1, …, PN to cover 1 C(T).
Configuration Pk ={p(k)

ij} is an N×N matrix with at most a single
“1” in each line (row or column). p(k)

ij=1 indicates that a packet
can be sent from input i to output j; p(k)

ij = 0 otherwise. Pk is
called a perfect matching if it has exactly N “1” elements. In
Stage 3, the switch fabric is reconfigured according to these N
configurations. An internal speedup S is applied to ensure that
this stage occupies only T regular slots. After the speedup is
applied, the switch fabric holds each Pk for φk compressed slots
for packet transmission. Finally in Stage 4 packets are sent onto
the output lines from output buffers (in T slots).

From the tagged packet in Fig. 1, we can see that the
bounded delay of any packet is 2T+H slots. Assume each switch
reconfiguration takes δ regular slots and T>Tmin=δN. Since δN
slots must be used to reconfigure the switch for N times, only T-
δN slots are left for transmitting C(T) in Stage 3. So, a speedup
factor denoted by Sreconfigure=T/(T-δN) is necessary to
compensate solely for the idle time caused by reconfiguration.
At the same time, the scheduling algorithm may produce many
empty slots (i.e. underutilize the bandwidth provided by the
configuration). Thus another speedup factor, Sschedule=(1/T)∑N

k=1
φ k, is required to compensate solely for the inefficient
scheduling. The overall internal speedup S is then given by S=
Sreconfigure×Sschedule= TSschedule/(T-δN) [5-6].

1 C(T) is covered by configurations P1, …, PK, each weighted by a non-

negative integer φ1, …, φK, if and only if ∑K
k=1φk p(k)

ij≥ cij for any i,j∈{1, …,
N}. Note that Pk ={p(k)

ij}.

III. ALGORITHM

A. General Idea
αi-SCALE takes a similar framework as MIN [5] but differs

in its underlying design principle. Fig. 2 summarizes αi-SCALE
which is detailed in Parts B&C. The idea is to schedule large
entries in C(T) first. The execution of αi-SCALE consists of an
inner-loop iteration (Steps 4-7) embedded inside an outer-loop
iteration (Steps 2-8). In the i’th outer-loop iteration, αi-SCALE
uses a threshold T/αi to identify large entries in C(T), where α is
a real number. Note that when entering the i’th outer-loop
iteration, the algorithm has scheduled all the entries larger than
T/αi-1 in previous steps and thus they have been converted to
zeros in C(T). In the i’th outer-loop iteration, αi-SCALE selects
large entries that satisfy T/αi-1≥cij>T/αi for scheduling.

After that, αi-SCALE performs an edge-coloring [8] based
on the selected large entries. Then, each color is scheduled by
using two configurations in the inner-loop iteration, where each
configuration covers half of the edges of the particular color. In
addition, αi-SCALE determines at most N/4 configurations in its
outer-loop iterations (Steps 2-8), and leaves the task of
determining the remaining configurations (for small entry
scheduling) to Step 9. The above two mechanisms are taken to
ensure that the N configurations can be properly constructed as
non-overlapping perfect matchings (no any two of them cover
the same entry of C(T)).2

The key issue of αi-SCALE is to determine a most suitable
(α,m) pair (to be discussed more later) for any given switch size
N, so that the resulting speedup factor Sschedule can be minimized.
We define a scale function

scheduleminimizesandsuitsbest),(SNα
iiNf α= .

Based on this scale function, we first calculate the best values of
(α,m) for any given switch size N, and then substitute them into
αi-SCALE shown in Fig. 2 to schedule C(T). (α,m) can be found
offline, as discussed in Part C. They are constants for any
specific N. The online execution of αi-SCALE is dominated by
N maximum-size matchings, resulting in a total time complexity
of O(N3.5).

B. Design Principle
We first define

 1)(−= ii αγ and

= −1)(i

Ti
α

ω . (1)

Since all the line sums of C(T) are not larger than T, and

 iiii αααγ ≥≥+−=+ 111)(,

then in each line of C(T), there can be at most γ(i) unscheduled
entries greater than the threshold T/αi in the i-th outer-loop
iteration. These unscheduled large entries are indicated by “1”s
in a matrix L for each loop (other entries are zeros), and the
corresponding bipartite unigraph [4] GL is edge-colored.

2 This is guaranteed because, for an r-regular bipartite graph G=(X∪Y,E)

with |X|=|Y|=n and r>3n/4, any partial matching M of G with |M|≤n/2 is a subset
of a perfect matching of G. Please also refer to Theorem 8 in [5].

T T+H 2T+H 3T+H
Packet delay=2T+H

St
ag

e

Fig. 1. Optical packet switch scheduling stages.

Switch reconfiguration δ
Traffic sending period

Time 1
2
3
4

1831

According to the classical König theorem [9], GL can be edge-
colored in γ(i) colors. Then each inner-loop iteration schedules
one color by using two non-overlapping perfect matchings. Each
perfect matching is weighted by ω(i) and it schedules half of the
edges of the color. Since all the entries cij in C(T) are integers,
those entries greater than ω(i) must have been scheduled in
previous iterations. As a result, the weight ω(i) is sufficient for
the i-th iteration. Consequently, the i-th outer-loop iteration
determines 2γ(i) configurations and introduces 2γ(i)ω(i) weight.
After each configuration is determined, it is removed from an
indicator matrix B (which is initialized to an all-1-matrix). Large
entries that have already been scheduled in previous steps are
also removed from C(T) (by referring to the indicator matrix B).
Note that this procedure terminates before the total number of
configurations that have been previously determined (Nm)
exceeds N/4 (i.e. Nm<N/4) in order to guarantee that non-
overlapping perfect matchings can always be found in B.
Assume that m is the number of outer-loop iterations required to
generate these Nm configurations. After m iterations, the
remaining small entries in C(T) are scheduled by using another
N-Nm configurations with a fixed weight of ω(m+1). Each of
these N-Nm configurations can be extracted (by performing
maximum-size matching) and then deducted from B. This
operation is guaranteed to be valid because B is always a
regular matrix. Let SE

schedule represent the Sschedule value produced
exactly by the algorithm. We have

 +−+= ∑

=

)1()()()(21
1

schedule mNNii
T

S m

m

i

E ωωγ

−+∑

×−=

=
− mm

m

i
i

i TNNT
T αα

α)(121
1

1
. (2)

Since minimizing SE
schedule in (2) appears to be a mixed-

integer nonlinear optimization problem and is obviously
intractable, we apply an approximation method here.
Specifically, we use an approximation SA

schedule≈SE
schedule, where

mm

m

mi

m

i

iA NmNS
ααα

ααα
αα

α 11
4
3

)1(
)1(2211

4
31)1(2

1
1

schedule

 ++

−
−−=

 ++−=

−
=
∑ . (3)

We can prove that the following inequality is true:3

1
13

scheduleschedule −
−<−

α
αAE SS . (4)

As we will discuss later, the typical value of α is α≈2.5. As a
result we have |SE

schedule-SA
schedule|<4.4. Inequality (4) guarantees

that our approximation SA
schedule is close enough to the exact

SE
schedule. Consequently, if we minimize SA

schedule, SE
schedule is also

roughly minimized.

According to the basic idea of the algorithm, the following
condition has to be satisfied in order to guarantee the existence
of non-overlapping perfect matchings in the indicator matrix B:

 4
12)(2

11

NiN
m

i

i
m

i
m <−== ∑∑

==

αγ . (5)

3 See Appendix A. Assume that T>N, N/T+2m/αm≤1, and use the boundary

condition (6) to determine (α,m) in αi-SCALE.

Particularly, αi-SCALE uses the following equation as its
boundary condition (constraint):

1
4

2
1

−=∑
=

Nm

i

iα . (6)

According to Lemma 1 in Appendix A, when using (6) as the
boundary condition, we have

4
21

4
NNmN

m <≤−− . (7)

Thus not only (5) is satisfied, but also Nm is guaranteed to be
close enough to N/4 in αi-SCALE. This ensures that large entries
in C(T) are sufficiently analyzed and scheduled.

Up to this point, the flow of αi-SCALE can be concisely
summarized as follows. Under the constraint of the boundary
condition (6), we find an (α,m) pair to minimize our objective
function SA

schedule in (3). α can be a fraction but m has to be an
integer (because m is the number of iterations). At the same
time, (α,m) pair is expected to be dynamically optimized for
different switch size N (so as to approximately minimize

αi-SCALE algorithm online part

Step 1. Initialization: Create an N×N all-1 matrix B={bst}. Get (α,m) pair
from αi-SCALE offline calculation. Use C={cst} to denote the traffic
matrix. Set i=1, scale=α and count=1.
Step 2. Select large entries: In an N×N all-0 matrix L={lst}, set lst=1 if
cst>T/scale and bst=1.
Step 3. Edge-coloring: Construct a bipartite unigraph GL from L. Edge-
color GL into γ(i) colors where γ(i) can also be calculated from (1). Set the
color identifier k=1.
Step 4. Partition edges: For color k, equally divide its edges into two sets
Ea and Eb. If the total number of edges of color k is an odd number, Ea
can have one more edge than Eb.
Step 5. Schedule Ea: For each edge in Ea, shadow its corresponding lines
(row and column) in B. Find a maximum-size matching MB in the
remaining un-shadowed sub-matrix of B. Then un-shadow all the lines of
B. The matching MB combines with all the edges in Ea to form a perfect
matching Pi. Set Pi’s weight as ω(i) defined in (1). Set B-Pi→B and
i+1→i. Set cst=0 in C if bst=0.
Step 6. Schedule Eb: Repeat Step 5 for Eb.
Step 7. Loop over colors: Set k+1→k. Loop to Step 4 until all the γ(i)
colors are scheduled.
Step 8. Outer-loop iteration: Set scale×α→scale and count+1→count.
Loop to Step 2 until count>m.
Step 9. Schedule small entries in C: Repeat this step to sequentially
extract the remaining N-Nm perfect matchings (by performing maximum-
size matching) from the indicator matrix B, where Nm is the total number
of configurations determined in Steps 1-8. After each perfect matching is
extracted, deduct it from B and set the constant ω(m+1) as its weight.

αi-SCALE algorithm offline part: (α,m) searching procedure

1) Search for α’s approximate value α*: Search for α*. α* is the value
that minimizes SA

schedule in (8).
2) Calculate m’s approximate value m*: Apply α* to (9) to calculate m*.
3) Determine m: Set m=ROUND(m*), where ROUND() represents the
function of taking the nearest integer.
4) Determine α: Substitute m in (10) by the value found in 3) and solve
the equation for α.

Fig. 2. αi-SCALE algorithm.

1832

SE
schedule in (2)). The values of (α,m) can then be substituted into

the online part of αi-SCALE in Fig. 2 to schedule C(T).

C. Determining (α,m) Pair
We now consider how to determine the suitable (α,m) pair

for a specific N. There are many possible methods. Aiming at
providing a complete solution for αi-SCALE, we suggest the
(α,m) searching procedure as listed in Fig. 2. It adopts the
following formulas (8)-(10). The correctness proof is given in
Appendix B.

42)4(
)1)(4(2

lg
8lg)]4()4lg[(2

2schedule −+−+
−−−−−−+=

NNN
NNNS A

αα
αα

α
ααα

)4()4(
86

−−+
++

NN
N

α
αα (8)

α
αα

lg
8lg)]4()4lg[(−−−+= NNm (9)

1
41

)1(2 −=
−

− Nm

α
αα (10)

Fig. 3 plots SA
schedule in (8). We can see that SA

schedule is
usually minimized around α≈2.5 instead of α=2 (note that MIN
[5] uses 2i as the threshold in the i’th iteration to select large
entries). It is also very important to note that the performance of
α=2 in Fig. 3 does not stand for the performance of MIN. The
reason is that, all the curves in Fig. 3 satisfy (7), which indicates
that the large entries in C(T) are scheduled fine enough with as
many configurations as possible (N/4-1-2m≤Nm<N/4). For MIN,
usually the first m outer-loop iterations generate less
configurations and leave more configurations to be weighted by
the constant weight. It may increase Sschedule. Intuitively, MIN
does not guarantee its Nm value to be as close to N/4 as αi-
SCALE does. This is because MIN uses a fixed threshold 2i
which cannot self-adjust according to the switch size N. So its
schedule for large entries is usually not fine enough and the
Sschedule performance may be worse than that (shown as α=2) in
Fig. 3. In the worst case, we can show that MIN may lead to a
bias of 2(2m+1-1) configurations less than N/4.

IV. PERFORMANCE ANALYSIS
Fig. 4 shows the Sschedule bounds due to the inefficient

scheduling for MIN and αi-SCALE. The bound for MIN in the
figure is derived and plotted by strictly following the steps of
MIN in [5]. 4 It is clear that the original bound
Sschedule=4(4+log2N) in [5] is too conservative (and thus
inaccurate) to represent MIN’s performance. For example, when
N=460, Sschedule=26.94 is sufficient for MIN. However, the
bound from [5] is Sschedule=4(4+log2N)=51.38.

From Fig. 4a, it is also obvious that αi-SCALE (shown in the
broad-brush curve) outperforms MIN in general. For example,
when N=200, Sschedule needed by MIN is 2+6×(1/2)+14×(1/4)+
(1/8)×(200-2-6-14)=30.75. However, for the same switch size,
because (α,m)=(2.5,3), Sschedule needed by αi-SCALE is just
4+12×(1/2.5)+30×(1/2.52)+(1/2.53)×(200-4-12-30)=23.45.

The above performance difference is due to the dynamic
scale function f(N,i)=αi adopted by αi-SCALE. αi-SCALE

4 The i-th outer-loop iteration generates 2(2i-1) configurations with each

weighted by T/2i-1. The boundary condition is Nm<N/4. The remaining N-Nm
configurations are weighted by a constant T/2m, where m is the number of outer-
loop iterations needed to determine the first Nm configurations. For example,
when N=460 (N/4=115), m=5 iterations are needed and 2, 6, 14, 30, 62
configurations are determined in the first 5 iterations respectively. Thus Sschedule
=(1/T)×[∑m

i=12(2i-1)T/2i-1+(460-2-6-14-30-62)T/25]=26.94. The effects of
roof and floor functions are ignored for simplicity.

S s
ch

ed
ul

e

N

αi-SCALE

MIN’S Gaps

MIN

Fig. 4. Performance comparison for MIN and αi-SCALE.

(a)

(b)

Sschedule=4(4+log2N)

N

S s
ch

ed
ul

e

MIN

αi-SCALE

S s
ch

ed
ul

e

Fig. 3. Relationship between SA
schedule and α when N changes

from 200 to 5000 in a step of 200.

α

1833

guarantees that Nm (the total number of configurations used to
schedule large entries) is close enough to its maximum possible
value of N/4 (i.e. N/4-1-2m≤Nm<N/4). In comparison, MIN does
not have such a guarantee. In the above example, Nm for αi-
SCALE is 4+12+30=46 (49-2×3≤Nm<50), but MIN uses only
2+6+14=22 configurations, which is much smaller than N/4=50.
This increases the scheduling inefficiency of MIN.

Fig. 4b shows the performance of MIN and αi-SCALE for
small N. In this range, although αi-SCALE is less advantageous,
it does complement MIN’s performance. Since αi-SCALE
involves approximation, this explains its poorer-than-MIN
performance in half of the switch size range studied.

V. CONCLUSION
In this paper, we showed that the speedup bound Sschedule=

4(4+log2N) given in [5] does not accurately represent the
performance of MIN algorithm. We recalculated the actual
performance from MIN and got a much lower Sschedule. A new αi-
SCALE algorithm was proposed for performance guaranteed
OPS scheduling, which also uses the minimum number (N) of
configurations to minimize traffic delay. By employing a
dynamic scale function, the new algorithm is optimized for
different switch sizes. Our results showed that αi-SCALE pushes
the speedup bound to an even lower level in general, while for
small and medium size OPS it effectively complements the
performance of MIN.

Future work may take three possible directions. The first one
is based on the same framework presented in this paper. The
goal is to find another better scale function or some discrete
series to analyze the traffic matrix. The second one is to devise
some new algorithms which totally abandon the framework of
MIN and αi-SCALE. The third direction is to enhance the OPS
architecture discussed in Section II. For example, we can
consider a parallel switching architecture, in which some
switching layers work in transmission phase while others are
reconfigured. This extra space diversity can help to overcome
the difficulties involved in realizing speedup in time domain.

APPENDIX A
CORRECTNESS PROOF OF INEQUALITY (4)

Lemma 1:

If formula (6) is used as the boundary condition for αi-
SCALE, Nm must satisfy the following inequality:

4
21

4
NNmN

m <≤−− .

Proof:

Because

 ∑=∑ +−≤

 ∑ −=≤∑ −

====

m

i

im

i

im

i

i
m

m

i

i N
1111
2]1)1[(212)1(2 αααα , (11)

According to (11) and (6) we have

1
4

21
4

−≤≤−− NNmN
m

. (12)

That is

4
21

4
NNmN

m <≤−− .

□

We define

 −+∑ ×−=

=
− mm

m

i
i

i NNΩ
αα

α 1)(112
1

1
, (13)

Because

 ∑ −=
=

m

i

i
mN

1
12 α ,

from (13) and (2) we have

 ΩSNN
T

Ω
T
NΩ E

sm

m

i

i ≤≤

 −+−−=− ∑
=

chedule
1

121 α . (14)

According to (13) and (3), there exists

 ()

 −−+

 −−−=− ∑
=

− mm

m

i

ii
i

A NNSΩ 1
4

1)1(12
1

1schedule α
αα

α
. (15)

From (12) we know that both terms on the right hand side of
(15) are non-negative. According to (12) and (15) we have

mmm

mm

i
mi

A mmmSΩ
αα

α
ααα

αα
αα

2
1

22
)1(

)1(222
1

1schedule +
−

<+
−

−=+≤− ∑
=

−
. (16)

From (14) and (16) we get

)()(scheduleschedulescheduleschedule
AEAE SΩΩSSS −+−=−

m
AE m

T
NSΩΩS

αα
α 2

1
2

scheduleschedule +
−

+<−+−≤ .

Let T>N. Usually 2m/αm is a very small value. Further assume
that N/T+2m/αm≤1. We can see that the inequality (4), as
rewritten below, is true for any α and N.

1
13

1
21scheduleschedule −

−=
−

+<−
α
α

α
αAE SS .

APPENDIX B
CORRECTNESS PROOF OF (α,m) SEARCHING PROCEDURE

SA
schedule, α, m and N are linked together by a complex

function (3). It is difficult to entirely substitute α by m in
SA

schedule expression. However, substituting m by α is quite easy.
Thus, we first substitute m by α in SA

schedule expression (3) to
reduce the number of variables and to get (8), in which α is the
sole variable for any specific N. Taking minimizing SA

schedule as
our goal, we can find a solution α* for (8) by searching
calculation. According to our previous analysis, this value of α*
also approximately minimizes SE

schedule in (2). But, after we get
α*, the corresponding m* calculated from (9) is usually not an
integer. However, the number of iterations m has to be an
integer. Thus we let m be the nearest integer of m* and calculate
α again, but this time we use the boundary condition (10)
(equivalent to (6)) to calculate α in order to guarantee that the
algorithm generates as many configurations as possible in the
first m outer-loop iterations (This is ensured by (7)). At this
point, we get (α,m). This (α,m) pair allows the algorithm to

1834

generate N/4-1-2m≤Nm<N/4 configurations in the first m outer-
loop iterations and approximately minimizes SA

schedule and
SE

schedule (because α≈α*).

According to the boundary condition (6), we have

1
41

)1(22
1

−=
−

−=∑
=

Nmm

i

i

α
ααα .

The above equation is actually identical with (10). From this
condition, it is easy to see that

α
αα
8

)4()4(−−+= NNm . (17)

This directly leads to (9). i.e.

α
αα

α
α

α lg
8lg)]4()4lg[(

8
)4()4(log −−−+=−−+= NNNNm .

Substituting m and αm in (3) by (9) and (17), we get

mm

m
A NmS

ααα
ααα 11

4
3

)1(
)1(22schedule

 ++

−
−−=

)4()4(
86

42)4(
)1)(4(2

lg
8lg)]4()4lg[(2 2 −−+

++
−+−+

−−−−−−+=
NN

N
NNN

NNN
α

αα
αα
αα

α
ααα .

Thus (8) is correct. Consequently, the group of formulas used in
αi-SCALE (i.e. (8)-(10)) is correct. In fact, because (10) is
equivalent to the boundary condition (6), according to Lemma 1
in Appendix A, Nm of αi-SCALE is always smaller than N/4 but
greater than or equal to N/4–1–2m. αi-SCALE takes this as an
advantage to analyze large entries in C(T) with sufficient
granularity, and to generate a fine schedule.

It is obvious that (8) depends only on α (consider N as a
system constant). We can find an α* to minimize SA

schedule and
estimate the corresponding m* using (9). However, m* is
usually a fraction. So, we have to take m=ROUND(m*) and
calculate the new α value again accordingly. In order to satisfy
the boundary condition (6), we use its counterpart (10) to
calculate α. This ensures that N/4–1–2m≤Nm<N/4.

A further analysis indicates that the following restriction in
Lemma 2 exists for αi-SCALE algorithm:

Lemma 2:

For any switch size N and α≥2, any (α, m) pair in αi-SCALE
has to satisfy the following inequality:

mm NN
11

16
4

8
4

 −>>

 − α .

Proof:

From the boundary condition (6), we know that

4
41

4
2

1

−=−=∑
=

NNm

i

iα and .
8

4
1

−=∑
=

Nm

i

iα

Thus

8
4−< Nmα . (18)

At the same time, for any α≥2, there exists mm

i

i αα <∑
−

=

1

1
, thus

 −=∑=+∑>

=

−

=
1

42
12

1

1

1

Nm

i

imm

i

im αααα .

That is

16
4−> Nmα . (19)

Combining (18) and (19), we have

mm NN
11

16
4

8
4

 −>>

 − α . (20)

□

The above formula (20) holds for both before ROUND(m*)
and after ROUND(m*). Let

mN
1

max 8
4

 −=α and mN

1

min 16
4

 −=α ,

We have

12
1

min

max ≈= m

α
α . (21)

For ROUND() function, it can change m’s value by at most
0.5 and thus 1/m changes only a little. As a result, αmax and αmin
will be quite stable. In this case, formula (21) indicates that our
final α is close enough to α*, that is α≈α*. Consequently, (α, m)
pair can still approximately minimize SA

schedule and SE
schedule.

REFERENCES
[1] A. Neukermans and R. Ramaswami, “MEMS technology for optical

networking applications”, IEEE Commun. Mag., vol. 39, pp. 62-69, Jan.
2001.

[2] J.E Fouquet et. al, “A compact, scalable cross-connect switch using total
internal reflection due to thermally-generated bubbles”, IEEE LEOS
Annual Meeting, pp. 169-170, Dec. 1998.

[3] O. B. Spahn, C. Sullivan, J. Burkhart, C. Tigges, and E. Garcia “GaAs-
based microelectromechanical waveguide switch”, Proc. 2000
IEEE/LEOS Intl. Conf. on Optical MEMS, pp. 41-42, Aug. 2000.

[4] Xin Li and Hamdi, M., “On scheduling optical packet switches with
reconfiguration delay”, Selected Areas in Communications, IEEE Journal
on , vol. 21, issue 7, pp. 1156-1164, Sept. 2003.

[5] B. Towles and W. J. Dally, “Guaranteed scheduling for switches with
configuration overhead”, IEEE/ACM Trans. Networking, vol. 11, no. 5,
pp. 835-847, Oct. 2003.

[6] Bin Wu and Kwan L. Yeung, “Minimizing internal speedup for
performance guaranteed optical packet switches”, GLOBECOM '04
IEEE, Vol. 3, pp. 1742-1746, 29 Nov.-3 Dec. 2004.

[7] T. Inukai, “An efficient SS/TDMA time slot assignment algorithm”, IEEE
Trans. Commun, vol. COM-27, no. 10, pp. 1449-1455, 1979.

[8] R. Cole and J. Hopcroft, “On edge coloring bipartite graphs”, SIAM
Journal on Computing, vol. 11, pp. 540-546, Aug. 1982.

[9] R. Diestel, Graph Theory, 2nd ed. New York: Spring-Verlag, 2000.

1835

