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Abstract—Fast link failure detection in all-optical networks 
(AONs) can be achieved using monitoring cycles (m-cycles). An 
m-cycle is a loop-back optical connection of supervisory 
wavelengths with a dedicated monitor. Compared to the channel-
based or link-based monitoring schemes, m-cycle based schemes 
require much less number of monitors. In this paper, we propose 
an ILP (Integer Linear Program) formulation for m-cycle design 
to minimize the network cost. Our contributions are two-fold: 1) 
non-simple m-cycles are enabled; and 2) an efficient tradeoff is 
allowed between the monitor cost and the bandwidth cost. 
Numerical results show that our algorithm outperforms existing 
algorithms with a significant performance gain. 

Keywords-All-optical network (AON); ILP (Integer Linear 
Program); link failure detection; monitoring cycle (m-cycle). 

I.  INTRODUCTION 
As the communication infrastructure evolves towards all-

optical networks (AONs), optical network topology also 
evolves from ring to mesh. With WDM technology, a single 
fiber can carry hundreds of wavelengths at 10 Gb/s or higher 
data rate. To minimize data loss upon an accidental failure such 
as a fiber-cut, fast fault detection is a must. Because of the lack 
of electrical terminations, fault detection schemes in traditional 
optical networks cannot be transplanted to AONs. 

Fault detection can be implemented at different protocol 
layers. In general, implementations using upper layer protocols 
[1] require a much longer detection time than the typical 50 ms 
requirement for optical recovery. To achieve fast fault 
detection, optical/physical layer schemes are preferred [2-3]. At 
the optical layer, a fault can be detected using a special optical 
device called monitor [4]. A channel-based monitoring scheme 
requires one monitor for each wavelength channel on each link, 
thereby requiring a very large number of monitors. A link-
based monitoring scheme is more scalable, but still requires 
one monitor per link. 

To further reduce the number of required monitors, 
monitoring-cycle (m-cycle) [2] is introduced. It is a loop-back 
optical connection with a dedicated monitor. It is implemented 
using a supervisory wavelength on each link it covers/passes 
through. Let the length of an m-cycle be the total number of 
links it covers (or the sum of distance-related costs of the 
links). If a set of m-cycles {c0, c1, …, cM-1} covers every link in 
the network, then the set is called a cycle cover, and the cover 
length is the total length of all the M m-cycles. In this case, the 
total number of monitors required is M, and the total amount of 
bandwidth dedicated to the cycle cover is its cover length. 

Assume there is at most a single link failure at a time. If a 
link fails, optical signals in the m-cycles covering this link will 
be disrupted, and the corresponding monitors will alarm. This 
generates an alarm code with the format of [aM-1, …, a1, a0], 
where ai=1 means that the monitor on m-cycle ci alarms and 
ai=0 otherwise. Fig. 1 shows a cycle cover consisting of three 
(dashed) m-cycles {c0, c1, c2}. If link (0, 1) fails, the monitors 
on c0 and c1 will alarm to generate the alarm code [0, 1, 1]. 
Similarly, if link (0, 2) fails, the monitor on c0 will alarm and 
the resulting alarm code is [0, 0, 1]. By decoding the alarm 
code, we can identify the location of the failure. Ideally, we 
should have a unique alarm code for every link in order to 
accurately localize each link failure. In reality, a cycle-based 
monitoring scheme cannot distinguish individual link failures 
on the same segment, where a segment is a path with at least 
two links and a degree of two at any intermediate node (such as 
2-4-3 in Fig. 1a). This is because all the links on the same 
segment must be covered by the same set of m-cycles. If we 
need to distinguish the link failures on the same segment, we 
can add extra link-based monitors [2-3]. For example, in Fig. 
1a we can add an extra link-based monitor to either (2, 4) or (3, 
4) to distinguish the two link failures. This increases the total 
number of monitors from 3 to 4, but it is still less than 7, as 
required by a pure link-based scheme. In general, if two 
links/segments form a cut of a network, e.g. link (1, 6) and 
segment 2-3-4 in Fig. 2, then the corresponding link failures 
also cannot be unambiguously identified by a cycle-based 
monitoring scheme. For simplicity, we treat the links in such a 
cut as if they were on the same segment. In this paper, we only 
focus on cycle-based monitoring schemes. 

To measure the accuracy of link failure localization, 
localization degree DL=||E||/A is defined, where ||E|| is the total 
number of links in the network, and A is the size of the alarm 
code set. For cycle-based monitoring schemes, we have A≤||E|| 
and thus DL≥1. This is because each link failure can trigger 
only one alarm code, but failures at different links (e.g. those 
on the same segment) may trigger the same alarm code. DL=1 
means that we can accurately localize every link failure in a 
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Fig. 1.  A simple example of m-cycles for link failure detection. 
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network. In this paper, we focus on constructing a set of m-
cycles that not only yields the minimum localization degree, 
but also consumes the least amount of network resources. The 
amount of network resources consumed is defined as network 
cost. It consists of both monitor cost (measured by the total 
number of monitors required) and bandwidth cost (measured 
by the cover length). 

Several algorithms have been proposed to construct a cycle 
cover with similar goals. HST [2] is based on a spanning tree. 
Fig. 1a shows the tree by the broad-brush links which are called 
trunks. Those links not in the tree are called chords. In HST, 
each m-cycle is generated from a chord where all other links on 
this m-cycle must be trunks. For example, the m-cycle 
generated from chord (1, 3) is 1-3-0-2-1. On the other hand, 
M2-CYCLE [3] always prefers m-cycles with minimum cycle 
length. For example, in Fig. 1a, the minimum-length m-cycle 
covering link (0, 3) is 0-1-3-0 instead of 1-3-0-2-1. In fact, 
Fig. 1 shows an M2-CYCLE solution. It is proved [3] that M2-
CYCLE always outperforms HST. For example, M2-CYCLE 
requires a cover length of 10 in Fig. 1 but HST requires 11. 

Existing algorithms [2-3] have several drawbacks. First, 
they only consider simple cycles. A simple cycle traverses a 
node at most once, whereas a non-simple cycle [5] can traverse 
a node multiple times. Fig. 3 shows a non-simple m-cycle. The 
dotted arrows indicate a possible connection of the supervisory 
wavelengths. The links on the cycle are defined as on-cycle 
links. If any on-cycle link fails, the associated monitor will 
alarm (same as using a simple m-cycle). Besides, existing 
algorithms [2-3] do not allow the tradeoff between the monitor 
cost and the bandwidth cost. In this paper, we propose an ILP 
formulation for m-cycle design to solve the above issues. 

II. ILP FORMULATION 

A. General Idea 
To minimize the network cost for link failure detection, we 

need to consider the tradeoff between the monitor cost and the 
bandwidth cost. Without loss of generality, we define the cost 
function as a weighted sum of the two cost components, or 

Cost = monitor cost + β × bandwidth cost               
= number of monitors + β × cover length              (1) 

where the value of β determines the relative importance 
between the two cost components. To formulate an ILP to 
minimize (1), we first need to define cycles using ILP. 
Following the approach in [5], we can weakly define a “cycle” 
by requiring each node in the network to have even number 
(including zero) of on-cycle links incident on it. However, such 
a weakly defined “cycle” may actually contain one or more 
disjoint cycles (i.e., cycles without any common node), where 
each cycle corresponds to an m-cycle. In what follows, we call 
the weakly defined “cycle” as a cycle set csj (where j ∈{0, 1, 

…, J-1} is the cycle set index). Fig. 4 gives an example of csj 
which contains two disjoint m-cycles. The links covered by any 
m-cycle in csj are called on-cycle links of csj. 

A limitation with the above cycle set definition is that we 
do not know the exact number of m-cycles/monitors in each csj. 
This makes it impossible to get an accurate monitor cost in (1). 
If we add extra constraints in ILP to ensure a unique m-cycle 
per csj, then an optimal ILP can be formulated and the total 
number of monitors can be obtained by just counting csj. But 
such an optimal ILP is generally too complex to be solved [5]. 

Instead of directly counting the total number of monitors 
required, we use the sum of all the decimal alarm codes as a 
heuristic measure for the monitor cost. A decimal alarm code is 
a decimal translation of the binary alarm code. An example is 
shown in Fig. 1b. Minimizing the sum of all the decimal alarm 
codes can suppress the required number of bits in the binary 
alarm codes. Since each bit corresponds to a cycle/cycle set, 
this in turn minimizes the total number of monitors and the 
monitor cost in (1). Another indirect effect is that, the total 
number of 1s in all binary alarm codes is minimized. This also 
minimizes the cover length. On the other hand, the bandwidth 
cost in (1) can be simply measured by the cover length.  

The last issue is to formulate a unique alarm code for each 
link/segment to achieve the minimum localization degree. With 
decimal alarm codes, this is quite easy as it does not involve 
bit-wise comparison of binary alarm codes. Let J be the 
maximum number of cycle sets in an ILP solution. We can 
have at most J bits in each binary alarm code, which is chosen 
from a candidate set of size 2J-1. To formulate the inequality 
among the chosen decimal alarm codes, our idea is to let each 
of them take one unique integer from {1, 2, …, 2J-1} (unless 
the corresponding links are on the same segment). 

B. Notations 
J: The maximum number of cycle sets in the solution. 
j:  Cycle set index where j∈{0, 1, …, J-1}. 

j
abe : Binary variable. It equals to 1 if link (a, b) is covered by 

csj, and 0 otherwise. 
j
az : General integer variable. It is the number of times that csj 

traverses node a. 
abα : General integer variable. It is the decimal alarm code of 

link (a, b). 
k

abr :  Binary variable. It equals to 1 if αab takes the k-th integer 
from the candidate set {1, 2, …, 2J-1}, and 0 otherwise. 

abc : The cost of adding a unit of supervisory wavelength to 
link (a, b). If hop-count is used as the cost metric, then 
cab=1; otherwise cab may include distance-related cost. 

β : Predefined constant. Its value determines the relative 
importance between the two cost components. 

Fig. 3.  Non-simple m-cycle. 
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Fig. 4.  Multiple disjoint m-cycles coexist in csj. 
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Fig. 2.  A cut consisting of link (1, 6) and segment 2-3-4. 
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abS :  If link (a, b) is on a segment, then Sab is the set of all the 
links on this segment. Otherwise Sab is a null set (Φ). 

S :  It is a set of links where each link is a delegate of a 
distinct segment (i.e., an arbitrary link on the segment). 

V:  The set of all the nodes in the network. 
E:  The set of all the links in the network. 

C. ILP Formulation 
Given a topology G(V, E) and the cost cab for each link (a, 

b)∈E, we formulate an ILP below to generate a cycle cover 
with the minimum localization degree such that the network 
cost for link failure detection is minimized. We first assume no 
segment in the network. Then, every link must have a unique 
alarm code.  

Objective:   
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The objective in (2) minimizes the sum of all the decimal 
alarm codes plus the cover length weighted by β. Cycle set is 
defined in (3). Binary alarm codes are converted into decimal 
codes by (4). A unique alarm code for each link failure is 
ensured by (5)～(7). Specifically, constraint (5) formulates αab 
into a combinatorial sum over the candidate alarm code set {1, 
2, …, 2J-1}. Constraint (6) ensures that each link (a, b) takes 
one (and only one) alarm code from this set. Constraint (7) says 
that each alarm code can be assigned to at most one link. 

We then consider networks with segments. In this case, 
constraint (7) is replaced by (8)～(10) below. 

cdab αα = , 

),( ba∀ , E∈),( dc : ΦSS cdab ≠= .     (8) 

1
),(

≤∑
∈Sba

k
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S
),(),(

11
ba

k
ab

ba

k
ab rr , 

∈∀k {1, 2, …, 2J-1};      (10) 

Constraint (8) enforces the same alarm code for all the links 
on the same segment. Constraint (9) ensures one alarm code (k) 
for at most one segment. From (10), if a decimal alarm code k 
is assigned to link (a, b)∈S, at most ||Sab|| links in the network 
can have the same alarm code k; otherwise k can be assigned to 
at most one link that is not on any segment. 

In fact, we can always use (8)～(10) to replace (7). If the 
network contains no segments, then S and Sab are null sets (Φ), 
and (8)～(10) degenerate to (7). 

D. Discussion 
Let LS be the total number of links on all the ||S|| segments. 

We can set the values of J and β using the guidelines below. 
( )  12log δ++−= SE SLJ                    (11) 

( )  22log2 δβ ++−= SE SL                          (12) 
where δ1 and δ2 are small positive integers. Note that 

( )  1log 2 ++− SE SL  denotes the lower bound for the number 
of required cycle sets. The actual number of required cycle sets 
tends to be close to this lower bound. This is because adding an 
additional cycle set doubles the size of the candidate alarm 
code set, and results in much higher design flexibility. For 
example, if a network has ||E||=22 links and no segments, the 
lower bound is ( )  1log2 ++− SE SL =   1log2 +E =5. Let δ1 = 4, 
we have J=5+4=9. The size of the candidate alarm code set is 
2J-1=29-1=511, which is much larger than ||E||=22. Therefore, 
the ILP has very high flexibility in choosing only 22 alarm 
codes from 511 candidates. Since the number of cycle sets is 
close to the lower bound, β in (12) can provide the necessary 
balance between the two cost components in (2). 

In general, J should be set large enough whereas the ILP 
will return less number of cycle sets in the solution. But the 
number of variables and constraints in the ILP soars 
exponentially with J. From (11), the practical value of J is 
generally not too large. Therefore, the number of variables and 
constraints in our ILP can be limited at an acceptable level. 

III. NUMERICAL RESULTS 
We consider the same set of networks as studied in [2-3]. 

The ILP is implemented using ILOG CPLEX 10.0 on a 
standard Pentium IV 2.2 GHz computer, with the following 
environment parameter settings: 1→emphasis mip, 2→mip 
strategy probe, 3→mip strategy rins, 3→mip strategy 
heuristicfreq, 2→mip cuts all, 3→mip strategy dive, 
3→preprocessing symmetry. 

The SmallNet topology in Fig. 5a is first considered with 
J=8 and β=0. With β=0, we aim at minimizing the monitor cost 
only. The cycle sets obtained are shown in Fig. 5a, with the 
“alarm code table” in Fig. 5b. Note that each “alarm code 
table” in this section is based on cycle set csj (instead of m-
cycles as in Fig. 1b). Though it may not have a proper physical 
meaning (due to multiple m-cycles in csj), it is the best way to 
record the original data directly returned by CPLEX. Besides, it 
can be easily translated to a true alarm code table. For example, 
Fig. 5a shows 5 cycle sets cs0～cs4 with 6 m-cycles c0～c5, 
where cs2 consists of a simple m-cycle c2 and a non-simple m-
cycle c5. Except cs2, each cycle set csj (0≤j≤4) matches an m-
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cycle cj. For link (2, 3), its csj based “alarm code” [cs7, cs6, cs5, 
cs4, cs3, cs2, cs1, cs0]=[0, 0, 0, 0, 0, 1, 0, 1]=5 can be translated 
to a true alarm code [c7, c6, c5, c4, c3, c2, c1, c0]=[0, 0, 1, 0, 0, 0, 
0, 1]=33. This is achieved by translating cs2 in the former to c5 
in the latter, because (2, 3) is covered by c5 in cs2. On the other 
hand, since link (0, 1) is covered by c2 in cs2, its alarm code [0, 
0, 0, 1, 0, 1, 0, 1]=21 is the same in both scenarios. Such a 
translation will change neither the m-cycles nor the localization 
degree. It only rearranges the values of the alarm codes. 

Note that most m-cycles in Fig. 5a are non-simple m-cycles. 
Fig. 5c compares our ILP-based solution with that generated by 
HST [2] and M2-CYCLE [3], all with DL=1. It is proved in [3] 
that M2-CYCLE always outperforms HST on both the monitor 
cost and the bandwidth cost. So we will only compare our ILP 
with M2-CYCLE. Fig. 5c shows that our ILP saves 50% 
monitors but requires a larger cover length when β=0. 

To provide the tradeoff between monitor and bandwidth 
costs, we vary β to 256, 512 and 1024 while keeping J=8. Our 

ILP returns solutions of 10, 8 and 9 m-cycles, all with the same 
cover length of 36 (Note that M2-CYCLE requires 12 m-cycles 
and the same cover length of 36). Compared with the case of 
β=0 in Fig. 5, as expected that the bandwidth cost is reduced, 
and the monitor cost is increased. 

Another observation is that, increasing β from 256 to 1024 
does not decrease the cover length. This is because J=8 is not 
large enough. With J=9 and β=1024, a solution with 9 m-cycles 
and a cover length of 35 is obtained in about 5 hours, as shown 
in Fig. 6. Compared to M2-CYCLE, this gives a 25% cut on 
monitor cost with one less supervisory wavelength-link. Fig. 6 
also shows that large β favors more simple m-cycles in the 
solution, as more emphasis is put on reducing bandwidth cost. 

We then consider networks with segments, namely, 
NSFNET, Bellcore and ARPA2 [2-3] in Fig. 7. Though our 
ILP can directly handle the original topologies in Fig. 7, its 
problem size can be reduced by simplifying the topologies first. 
This is achieved by treating each segment as a “link” with a 

J: 9 
β: 1024 
Solution time: 19628.64 sec 
Gap to “optimality”: 1.38% 
Number of m-cycles: 9 
Cover length: 35 

ILP in this paper: 

Number of m-cycles: 12 
Cover length: 36 
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Fig. 6.  m-cycle design for SmallNet with J=9 and β=1024 (DL=1). 
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Fig. 5.  m-cycle design for SmallNet with J=8 and β=0 (DL=1). 
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cost equal to the sum of all link costs on it (e.g. 4-6-7 in 
NSFNET is treated as a “link” (4, 7) with c47=2). Exceptions 
include 5-13-11, 4-14-5 in Bellcore (both segments are 
unchanged) and 0-1-2-5 in APAR2 (treated as a “link” (0, 2) 
with c02=2 plus a link (2, 5) with c25=1). This is to avoid 
multiple links between two neighboring nodes (e.g. if 4-14-5 
in Bellcore is treated as a “link”, two links will exist between 
nodes 4 and 5). For simplicity, we avoid this case although our 
ILP can be extended to handle it. 

Based on the simplified topologies, the solutions obtained 
with β=1024 are shown in Figs. 8～10 and are compared to 
M2-CYCLE solutions. For NSFNET, CPLEX runs for a very 
long time, so we terminate it after 3 hours with a gap to 
“optimality” of 11.08%. Note that in our ILP model this gap is 
different from the true gap-to-optimality in an optimal design 
model. From Fig. 8, we can see that our ILP generates a 
solution with one less m-cycles and a 7.69% cut on the cover 
length. For BellCore, our ILP achieves the same cover length 
as M2-CYCLE, but saves 21.43% on monitor cost (see Fig. 9). 
For ARPR2, both our ILP and M2-CYCLE generate the same 
solution, as shown in Fig. 10. 

IV. CONCLUSION 
Compared to channel-based and link-based monitoring 

schemes, a scheme based on monitoring cycles (m-cycles) can 
greatly reduce the required number of monitors for fast link 
failure detection in all-optical networks (AONs). Existing m-

cycle design algorithms lack a tradeoff between the two cost 
components of the network cost (i.e., monitor cost and 
bandwidth cost). In this paper, we formulated an ILP to achieve 
the minimum localization degree and to minimize the network 
cost. The key idea is to minimize the sum of all the decimal 
alarm codes plus the cover length weighted by a factor, and to 
assign a unique alarm code to each link or segment. 

Our contributions are two-fold: 1) we introduced non-
simple m-cycles; 2) our ILP allows an efficient tradeoff 
between the two cost components. Compared to existing 
algorithms, our ILP can significantly reduce the network cost 
required in an m-cycle based monitoring scheme. 
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Fig. 7.  Three typical topologies taken from [2-3]. 

Fig. 8.  NSFNET (DL=1.105) 
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