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Abstract-We study survivable broadcast in high-speed
networks against a single link/node failure. We follow the classic
approach of blue/red tree [1) to construct a pair of spanning
trees (i.e, a blue tree and a red tree) such that the connectivity
between the root and an arbitrary node is ensured (via at least
one tree) in the presence of a single link/node failure . To ensure
that the blue and red trees are constructed in a cost-efficient
way, heuristic algorithms have been designed to minimize the
cost involved in tree construction. In this paper, we tackle the
same problem but resorting to Integer Linear Programming
(ILP) for optimal solutions. Two efficient ILPs are formulated,
one for protecting against single link failure (MinCost-E) and
the other for node failure (MinCost-V). Numerical results show
that our ILPs can generate optimal solutions in relatively short
amount of time. As compared with the existing heuristic
algorithms, we observe a significant improvement in
performance.

Keywords- Integer Linear Programming (ILP); survivable
broadcasttrees; blue/red tree.

I. INTRODUCTION

Due to the high-speed nature of our backbone networks
nowadays, even a very short service downtime can result in
enormous data loss. Therefore, network survivability is of
paramount importance. To this end, various protection and
restoration schemes have been extensively studied in the
literature, e.g. [1]-[15]. In this paper, we focus on designing
protection schemes for broadcast applications. In general,
broadcast applications are more sensitive to failures than
unicast because more downstream nodes will be affected by a
single failure in the network. For fast broadcast protection
[1]-[5] , the blue/red tree approach is usually adopted, in
which the connectivity between the source/root and an

arbitrary node is always ensured (via either blue or red or
both trees) in the presence of a single link/node failure. An
example is shown in Fig. I. Source node 1 is broadcasting to
all other nodes in the network. A pair of blue and red trees for
protecting against any single link failure (in Fig. l(a)) are
constructed in Fig. l(b) . If node 1 is broadcasting along the
blue tree and link (5, 12) fails, (downstream) nodes 5 and 6
are disconnected from the blue tree. Since they are still
connected by the red tree, the receiving can be quickly
resumed when node 3, the first upstream node of nodes 5 & 6
in the red tree and also a node in the uninterrupted blue tree,
starts to forward a copy of data it received from the blue tree
onto the red tree branch/link (3, 6).

It is shown in [1] that for an arbitrary node-redundant (i.e.
2-vertex connected) or edge-redundant (i.e. 2-edge connected)
network, there always exists such a pair of blue tree TB and
red tree TR to protect against any single link or node failure.
For a given broadcast session, the blue/red tree solution (i.e.
the pair of blue/red trees found) is not unique, e.g. Figs. I (b)
& (c) are two possible solutions for the same broadcast
session rooted at node 1. Each solution is associated with a
different network cost, which is defined in [2] as the number
of distinct links traversed by the two trees. That means if a
link is traversed by both trees, e.g. link (5, 12), it is only
counted once. This is because at any time on a specific link,
only one tree (either TB or TR

) can be active, and thus the
transceivers at the two ends of the link as well as the link
bandwidth can be shared by both trees. From Figs. 1(b) & (c),
we can see that the network costs for the two solutions are 16
and 17, respectively.

(a) Network topology. (b) Our blue/red tree solution. (c) Blue/red tree solution from [2].

Fig. 1. Blue/red tree solutions for the example network in [2], where edges not on the trees are removed in (b) & (c).
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3) Explanation:
Objective (1) aims at maximizing the number of common

edges trarversed by the two trees. Constraints (2)-(9) ensure
that both TB and TR are spanning trees with a common root.

per(i,j,d) : Binary variable. It equals to 1 if edge (i,j) is
on the path from root to destination node don TR

, and 0
otherwise.

V : The set ofall the nodes in the network.
E : The set of all the directed edges in the network.

2) lLP Formulation:
Given a network G(V, E) , the total cost of the two trees

can be minimized by solving the ILP below (denoted as
MinCost-E).

Objective:

Maximize L ce(i,j). (1)
(i,j)eE

Subject to:

Llf = 1. (2)
ieV

rs = 1, SEVe (3)

eb(i, j) + eb(j, i) ::;; 1, V(i,j) E E. (4)

er(i,j)+er(j,i)::;; 1, V(i,j) E E. (5)

L eb(i,j) = l-rj , VjEV. (6)
(i,j)eE

L er(i,j) = l-rj , VjEV. (7)
(i,j)eE

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(19)

(16)

per(i,S, d) = 0,

eb(i,j)+er(i,j)::;;1,

peb(i,j,j) = eb(i,j),

per(i,j,j) = er(i,j),

peb(i,S,d) = 0,

vl-v~ ~aeb(i,j)-(I-eb(i,j)), V(i,j) EE.

V; -v:. ~ aer(i,j)-(I-er(i,j)), V(i,j) EE.

eb(i,j)+er(i,j)+eb(j,i)+erU,i)-2ce(i,j) ~ 0,
V(i,j) E E.

eb(i,j) +er(i,j) +eb(j,i) +er(j,i)-ce(i,j) ::;; 1,
V(i,j) E E.

V(i,j)EE.

V(i,j)EE:j*S.

V(i,j)EE:j*S.

V(i,S)EE,

VdEV:d*S.
V(i,S)EE,

VdEV:d*S.
peb(i,j,k)+eb(k,d)-I::;; peb(i,j,d),

V(i,j),V(k,d)EE:j*S,k*S,d*S. (17)

per(i,j,k)+er(k,d)-I::;; per(i,j,d),

V(i,j),V(k,d)EE:j*S,k*S,d*S. (18)

1Jeb(i,j,d)+per(i,j,d)+1JebU,i,d)+perU,i,d) ::;;1,

V(i,J)E~VdEV:i*S,j*S,d*S

In order to mmmnze the network cost, the tree
construction algorithm should maximize the number of
common links traversed by the two trees. To this end, some
heuristic tree construction algorithms are proposed in [3], and
are subsequently refmed in [2]. In this paper, we also target at
fmding the minimum cost blue/red tree pair. But unlike [2, 3],
we adopt the Integer Linear Programming (ILP) for optimal
solutions. Efforts are made in formulating efficient ILPs to
speed up the optimization process. Although the ILP running
time is still generally longer than heuristic algorithms, we
show that the reduction in network cost is significant.

The rest of this paper is organized as follows. Section II
formulates two ILPs for network cost minimization, one for
link failure (MinCost-E) and one for node failure (MinCost
V). Numerical results are presented in Section III. We
conclude the paper in Section IV. Throughout the paper,
"link" and "edge" as well as "vertex" and "node" will be used
interchangeably.

II. MINIMIZING TOTAL NETWORK COST

The network cost is minimized if the number of common
links traversed by the blue/red tree pair is maximized. It
should be noted that a common link cannot be traversed by
both trees in the same direction. Otherwise, a failure at this
edge/link will disconnect all the downstream nodes from the
root due to the disruption ofboth trees.

A. MinCost-E: survivingfrom any single linkfailure

We first formulate an ILP that minimizes the total network
cost involved in fmding a pair of blue/red trees to survive
from any single link failure.

1) Notations:
We use (i,j) to denote an undirected edge connecting

nodes i and j, and use (i, j) to denote a directed edge from
node ito j. The notations used in MinCost-E are described as
follows.

If : Binary variable. It equals to 1 if node i is the root of TB

and TR
, and 0 otherwise.

S : The given common root ofTB and TR
•

eb (i, j) : Binary variable. It equals to 1 if edge (i, j) is on
TB

, and 0 otherwise.
er (i, j) : Binary variable. It equals to 1 if edge (i, j) is on

TR
, and 0 otherwise.

v~ : Auxiliary voltage value assigned to node ion TB
•

v~ : Auxiliary voltage value assigned to node i on TR
•

a : A small constant that serves as the minimum step of
voltage increase along each tree; 1/IIVII ~ a > 0 .

ce (i, j) : Binary variable. It equals to 1 if edge (i, j) is a
common edge on both TB and TR

, and 0 otherwise.
peb(i,j,d) : Binary variable. It equals to 1 if edge (i,j) is

on the path from root to destination node don TB
, and 0

otherwise.
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Specifically, (2) and (3) require the two trees share a common
root, (4) and (5) define directed edges on the trees, (6) and (7)
require each non-root node to have a single ingress edge, and
(8) and (9) prevent looping on TB and TR by assigning each
child node a higher auxiliary voltage value than its parent.

Constraints (10) and (11) defme the number of common
edges trarvesred by the two trees Ce (i, j) . Constraint (12)
ensures that any edge is not traversed by TB and TR in the
same direction. Constraints (13)-(19) formulate the properties
of the blue/red trees against single link failure. In particular,
(13) and (14) indicate that if an edge is on a tree, then the
path on the tree between the root and its ending node must
pass through this edge. (15) and (16) indicate that the root
cannot have any ingress edge on the trees. (17) and (18) say
that, if there is a path on a tree connecting the root S and a
node k via an intermediate edge (i,j) , then we can fmd a
path via the same edge (i, j) connecting S and a neighbor d
of k if (k, d) is on the tree. Constraint (19) guarantees that
the paths from the root to each destination node on TB and TR

pass through different directed edges.

B. MinCost-V: survivingfrom any single nodefailure

1) Notations:
We now extend the MinCost-E ILP to provide node failure

protection. We call it MinCost-V. For node protection, two
variables pVb (i, d) and pVr (i, d) are defmed as follows to

replace peb(i,j,d) and per(i,j,d) in MinCost-E, while all

other variables are the same.
pVb(i, d) : Binary variable. It equals to 1 if the intermediate

node i is on the path from S to d on TB
, and 0

otherwise.
PVr (i, d) : Binary variable. It equals to 1 if the intermediate

node i is on the path from S to d on TR
, and 0

otherwise.

2) lLP Formulation:
MinCost-V reuses (1)-(12) from MinCost-E, but (13)-(19)

are replaced by constraints (20)-(32) below.
PVb(S,d) =1, tldEV:d*S. (20)

PVr(S,d) = 1, tid E V: d *S. (21)

pvb(i,S) =0, ViEV:i*S. (22)

PVr(i,S) = 0, Vi E V: i *S. (23)

pvb(i,i) = 1, Vi E V. (24)

PVr(i,i) = 1, Vi E V. (25)

PVb(i,d)+PVb(d,i)~I, Vi,VdEV:i*d (26)

PVr(i,d)+ PVr(d,i) ~ 1, Vi,VdEV: i*d (27)

pvb(i,j) ~ eb(i,j), V(i,j) EE. (28)

PVr(i,j) ~ er(i,j)" V(i,j) EE. (29)

pvb(k,i)+eb(i,j)-1 ~ pvb(k,j),

VkEV, V(i,j)EE:i*S,j*S. (30)

PVr(k,i)+er(i,j)-1 ~ PVr(k,j),

VkEV, V(i,j)EE:i*S,j*S. (31)

JNb(i,d)+JNr(d,i) ~1, Vi,VdEV:i*8,d*S (32)

3) Explanation:
Since (1)-(12) are the same as those in MinCost-E, we only

explain new constraints (20)-(32) below. Among them, (20)
(23) say that we can always fmd a path on TB and TR to
connect the root to any other node but the root cannot be a
destination. Constraints (24) and (25) stipulate that the root
can be connected to any destination node by a path on the
tree via the destination node itself. By (26) and (27), if node i
is an intermediate node on the path from the root to another
node d on TB and TR

, then d cannot be an intermediate node
on the path from the root to i on the same tree. Constraints
(28) and (29) specify that if a directed edge (i, j) is on a tree

(TR or TB
) , then there must be a path on the tree connecting

the root to j via node i. Constraints (30) and (31) say that, if
there is a path on a tree connecting the root S and a node i via
an intermediate node k, then we can fmd a path on the tree
via k connecting S and a neighbor j of i if edge (i, j) is on

the tree. Finally, (32) ensures that the paths from the root to
each destination node on TB and TR pass through different
nodes.

III. NUMERICAL RESULTS AND DISCUSSION

Our ILPs are solved by CPLEX 11.0 on a Core2 2.66 GHz
Windows PC with 2G bytes of memory. For comparison, the
two heuristic algorithms proposed in [2] are implemented.
They are F-GMFBT-E (for link protection) and F-GMFBT-V
(for node protection).

We first consider four benchmark networks. They are ENI
in Fig. 2(a) and EN2 in Fig. 3(a), as taken from [2], the pan
European COST 239 in Fig. 4(a) (11 nodes and 26 links), and
the high-speed Italian network in Fig. 5(a) (21 nodes and 36
links). Without loss of generality, we always take node 1 as
the root. The blue/red tree solutions found using different
algorithms are plotted in Figs. 2 to 5, where edges on TB are
blue/solid lines and edges on TR are red/dashed lines, and
edges not on the trees are removed for simplicity.

Tables I-III provide a concise summary, where the quality
of our ILP-based solutions can be easily compared with the
existing heuristic algorithms F-GMFBT-E and F-GMFBT-V.
We can see that for larger network sizes and more
complicated network topologies, our ILPs give more
significant performance gain over the heuristics. From Table
III, we can see that the running time of our ILPs is actually
quite short.
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(a) ENl in [2] (size: l4N22L). (b) Solutionobtainedfrom MinCost-E. (c) Solution obtained from F-GMFBT-E.

Fig. 2. Case study for network EN!. (Only link protection is considered).
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(a) EN2 in [2] (size: l4N23L). (b) Solutionobtained from MinCost-V. (c) Solutionobtainedfrom F-GMFBT-V.

Fig. 3. Case study for network EN2. (Only node protection is considered).

(a) Pan EuropeanCOST (b) Solutionobtained from (c) Solutionobtained from (d) Solutionobtained from (e) Solutionobtained from
239 network (size: llN26L). MinCost-E. F-GMFBT-E. MinCost-V. F-GMFBT-V.

Fig. 4. Case study for the pan European COST 239 network. (Both link and node protections are considered).
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(a) High-speedItalian network (b) Solution obtained from (c) Solutionobtained from (d) Solutionobtained from (e) Solutionobtained from
(size: 2lN36L). MinCost-E. F-GMFBT-E. MinCost-V. F-GMFBT-V.

Fig. 5. Case Study for the high-speed Italian network. (Both link and node protections are considered).
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algorithms, F-GMFBT-E, F-GMFBT-V, MinCost-E and
MinCost-V. We can see that our ILPs, MinCost-E and
MinCost-V, cut down the solution cost ranging from 11
15%. On the other hand, Table V lists the average solution
time of our ILPs, which ranges from 3.16 to 1358.78
seconds.

TABLEI
TOTAL COST

Scheme Total cost on example networks (edges)

ENI EN2 pan EuropeanCOST 239 network high-speedItalian network

MinCost-E 16 - 11 21

F-GMFBT-E 17 - 14 25

MinCost-V - 14 11 21

F-GMFBT-v - 18 13 24

TABLEII
PERCENTAGE IMPROVEMENT OVER THE EXISTING HEURISTICS

Scheme Percentage improved on example networks (0A»)

ENI EN2 pan EuropeanCOST 239 network high-speedItalian network
MinCost-Evs F-GMFBT-E 5.88 - 15.38 8.70
MinCost-Vvs F-GMFBT-V - 22.22 15.38 12.50

TABLEIII
SOLUTION TIME

Scheme Solution time on example networks (see.)

ENI EN2 pan EuropeanCOST 239 network high-speedItalian network

MinCost-E 1.47 - 101.11 313.45

MinCost-V - 1.22 38.09 20.02

Next, we apply the heuristic algorithms in [2] and our
ILPs on randomly generated networks. The network
topologies have three different sizes: 10N20L (Le. 10 nodes
20 links), 15N30L and 20N40L. For each network size, we
generate 20 2-edge connected networks for link protection
and 20 2-vertex connected networks for node protection.

Table IV gives the average network cost of the rblue/red
tree solution found using different tree construction

TABLEIV
AVERAGE TOTAL COST

Scheme Average total cost for three network sizes (edges)

10N20L 15N30L 20N40L

MinCost-E 10 15.05 20.25

F-GMFBT-E 11.55 17.4 24.05

MinCost-V 10 15 20.05

F-GMFBT-v 11.25 17 22.65

TABLE V
AVERAGE SOLUTION TIME

Scheme Average solution time for three network sizes (see.)

10N20L 15N30L 20N40L

MinCost-E 13.80 397.05 1358.78

MinCost-V 3.16 60.16 397.40

IV. CONCLUSION

We formulated two efficient ILPs, MinCost-E and
MinCost-V, to construct a pair of survivable broadcast trees
with the same root. Upon any single link or node failure, the
root is still connected to any other node in the network by at
least one tree. MinCost-E and MinCost-V minimize the total
cost as required. For medium-size networks, our ILPs can
generate optimal solutions in a reasonable amount of
running time, with much higher solution quality than the

existing heuristic counterparts.
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