37,636 research outputs found

    Protecting privacy of users in brain-computer interface applications

    Get PDF
    Machine learning (ML) is revolutionizing research and industry. Many ML applications rely on the use of large amounts of personal data for training and inference. Among the most intimate exploited data sources is electroencephalogram (EEG) data, a kind of data that is so rich with information that application developers can easily gain knowledge beyond the professed scope from unprotected EEG signals, including passwords, ATM PINs, and other intimate data. The challenge we address is how to engage in meaningful ML with EEG data while protecting the privacy of users. Hence, we propose cryptographic protocols based on secure multiparty computation (SMC) to perform linear regression over EEG signals from many users in a fully privacy-preserving(PP) fashion, i.e., such that each individual's EEG signals are not revealed to anyone else. To illustrate the potential of our secure framework, we show how it allows estimating the drowsiness of drivers from their EEG signals as would be possible in the unencrypted case, and at a very reasonable computational cost. Our solution is the first application of commodity-based SMC to EEG data, as well as the largest documented experiment of secret sharing-based SMC in general, namely, with 15 players involved in all the computations

    Near-Horizon Virasoro Symmetry and the Entropy of de Sitter Space in Any Dimension

    Get PDF
    De Sitter spacetime is known to have a cosmological horizon that enjoys thermodynamic-like properties similar to those of a black hole horizon. In this note we show that a universal argument can be given for the entropy of de Sitter spacetime in arbitrary dimensions, by generalizing a recent near horizon symmetry plus conformal field theory argument of Carlip for black hole entropy. The implications of this argument are also discussed.Comment: 13 pages, no figure. Add one reference and correct a minor typo in pp.6, no change was made in tex

    Identification of Seawater Quality by Multivariate Statistical Analysis in Xisha Islands, South China Sea

    Get PDF
    Xisha waters are considered to be in pristine condition, while facing the fast increasing stress under anthropogenic activities. Water quality around Yongxing Island (YX) has been measured in May, 2012. The results show that the water quality is of the first class standards as compared to the water quality of China, with insignificant difference among the monitoring stations. Robust principal component analysis (PCA) was used to identify the spatial pattern of water quality. YX is characterized by high DO, salinity, and Chl-a with low nutrients, indicating phytoplankton photosynthesis is stronger in YX island waters than the rest of the study areas. Beidao (BD) is characterized by high NH4-N and COD, and low pH, implying that these areas may have higher organic matter decomposition than rest of the areas. The water quality monitoring stations should cover spatially and temporally around Xisha waters for protecting the marine environment

    A Magnetohydrodynamic Model for the Formation of Episodic Jets

    Get PDF
    Episodic ejection of plasma blobs have been observed in many black hole systems. While steady, continuous jets are believed to be associated with large-scale open magnetic fields, what causes the episodic ejection of blobs remains unclear. Here by analogy with the coronal mass ejection on the Sun, we propose a magnetohydrodynamical model for episodic ejections from black holes associated with the closed magnetic fields in an accretion flow. Shear and turbulence of the accretion flow deform the field and result in the formation of a flux rope in the disk corona. Energy and helicity are accumulated and stored until a threshold is reached. The system then loses its equilibrium and the flux rope is thrust outward by the magnetic compression force in a catastrophic way. Our calculations show that for parameters appropriate for the black hole in our Galactic center, the plasmoid can attain relativistic speeds in about 35 minutes.Comment: 8 pages, 2 figures; the finalized version to appear in MNRA
    corecore