7,095 research outputs found

    Perturbative Renormalizations of Anyon Quantum Mechanics

    Full text link
    In bosonic end perturbative calculations for quantum mechanical anyon systems a regularization and renormalization procedure, analogous to those used in field theory, is necessary. I examine the reliability and the physical interpretation of the most commonly used bosonic end regularization procedures. I then use the regularization procedure with the most transparent physical interpretation to derive some bosonic end perturbation theory results on anyon spectra, including a 3-anyon ground state energy.Comment: 19 pages, Plain LaTex, MIT-CTP-232

    Anyon in External Electromagnetic Field: Hamiltonian and Lagrangian Formulations

    Full text link
    We propose a simple model for a free relativistic particle of fractional spin in 2+1 dimensions which satisfies all the necessary conditions. The canonical quantization of the system leads to the description of one- particle states of the Poincare group with arbitrary spin. Using the Hamil- tonian formulation with the set of constraints, we introduce the electro- magnetic interaction of a charged anyon and obtain the Lagrangian. The Casimir operator of the extended algebra, which is the first-class constraint, is obtained and gives the equation of motion of the anyon. In particular, from the latter it follows that the gyromagnetic ratio for a charged anyon is two due to the parallelness of spin and momentum of the particle in 2+1 dimensions. The canonical quantization is also considered in this case.Comment: 9 pages, Latex, HU-SEFT R 1993-1

    Classical Dynamics of Anyons and the Quantum Spectrum

    Full text link
    In this paper we show that (a) all the known exact solutions of the problem of N-anyons in oscillator potential precisely arise from the collective degrees of freedom, (b) the system is pseudo-integrable ala Richens and Berry. We conclude that the exact solutions are trivial thermodynamically as well as dynamically.Comment: 19 pages, ReVTeX, IMSc/93/0

    Classification and Analysis of Regulatory Pathways Using Graph Property, Biochemical and Physicochemical Property, and Functional Property

    Get PDF
    Given a regulatory pathway system consisting of a set of proteins, can we predict which pathway class it belongs to? Such a problem is closely related to the biological function of the pathway in cells and hence is quite fundamental and essential in systems biology and proteomics. This is also an extremely difficult and challenging problem due to its complexity. To address this problem, a novel approach was developed that can be used to predict query pathways among the following six functional categories: (i) “Metabolism”, (ii) “Genetic Information Processing”, (iii) “Environmental Information Processing”, (iv) “Cellular Processes”, (v) “Organismal Systems”, and (vi) “Human Diseases”. The prediction method was established trough the following procedures: (i) according to the general form of pseudo amino acid composition (PseAAC), each of the pathways concerned is formulated as a 5570-D (dimensional) vector; (ii) each of components in the 5570-D vector was derived by a series of feature extractions from the pathway system according to its graphic property, biochemical and physicochemical property, as well as functional property; (iii) the minimum redundancy maximum relevance (mRMR) method was adopted to operate the prediction. A cross-validation by the jackknife test on a benchmark dataset consisting of 146 regulatory pathways indicated that an overall success rate of 78.8% was achieved by our method in identifying query pathways among the above six classes, indicating the outcome is quite promising and encouraging. To the best of our knowledge, the current study represents the first effort in attempting to identity the type of a pathway system or its biological function. It is anticipated that our report may stimulate a series of follow-up investigations in this new and challenging area

    Clinical and molecular characterization of HER2 amplified-pancreatic cancer

    Get PDF
    <p>Background: Pancreatic cancer is one of the most lethal and molecularly diverse malignancies. Repurposing of therapeutics that target specific molecular mechanisms in different disease types offers potential for rapid improvements in outcome. Although HER2 amplification occurs in pancreatic cancer, it is inadequately characterized to exploit the potential of anti-HER2 therapies.</p> <p>Methods: HER2 amplification was detected and further analyzed using multiple genomic sequencing approaches. Standardized reference laboratory assays defined HER2 amplification in a large cohort of patients (n = 469) with pancreatic ductal adenocarcinoma (PDAC).</p> <p>Results: An amplified inversion event (1 MB) was identified at the HER2 locus in a patient with PDAC. Using standardized laboratory assays, we established diagnostic criteria for HER2 amplification in PDAC, and observed a prevalence of 2%. Clinically, HER2- amplified PDAC was characterized by a lack of liver metastases, and a preponderance of lung and brain metastases. Excluding breast and gastric cancer, the incidence of HER2-amplified cancers in the USA is >22,000 per annum.</p> <p>Conclusions: HER2 amplification occurs in 2% of PDAC, and has distinct features with implications for clinical practice. The molecular heterogeneity of PDAC implies that even an incidence of 2% represents an attractive target for anti-HER2 therapies, as options for PDAC are limited. Recruiting patients based on HER2 amplification, rather than organ of origin, could make trials of anti-HER2 therapies feasible in less common cancer types.</p&gt

    Insights from Modeling the 3D Structure of New Delhi Metallo-β-Lactamse and Its Binding Interactions with Antibiotic Drugs

    Get PDF
    New Delhi metallo-beta-lactamase (NDM-1) is an enzyme that makes bacteria resistant to a broad range of beta-lactam antibiotic drugs. This is because it can inactivate most beta-lactam antibiotic drugs by hydrolyzing them. For in-depth understanding of the hydrolysis mechanism, the three-dimensional structure of NDM-1 was developed. With such a structural frame, two enzyme-ligand complexes were derived by respectively docking Imipenem and Meropenem (two typical beta-lactam antibiotic drugs) to the NDM-1 receptor. It was revealed from the NDM-1/Imipenem complex that the antibiotic drug was hydrolyzed while sitting in a binding pocket of NDM-1 formed by nine residues. And for the case of NDM-1/Meropenem complex, the antibiotic drug was hydrolyzed in a binding pocket formed by twelve residues. All these constituent residues of the two binding pockets were explicitly defined and graphically labeled. It is anticipated that the findings reported here may provide useful insights for developing new antibiotic drugs to overcome the resistance problem

    Constraints on the Mass and Mixing of the 4th Generation Quark From Direct CP Violationϵ/ϵ\epsilon^{\prime}/\epsilon and Rare K Decays

    Full text link
    We investigate the ϵ/ϵ\epsilon^{\prime} /\epsilon for KππK\to \pi\pi in a sequential fourth generation model. By giving the basic formulae for ϵ/ϵ\epsilon^{\prime}/\epsilon in this model, we analyze the numerical results which are dependent of mtm_{t^{\prime}} and imaginary part of the fourth CKM factor, ImVtsVtd{Im}V^{*}_{t^{'}s}V_{t^{'}d} (or VtsVtdV^{*}_{t^{'}s}V_{t^{'}d} and the fourth generation CKM matrix phase θ\theta). We find that, unlike the SM, when taking the central values of all parameters for ϵ/ϵ\epsilon^{\prime}/\epsilon, the values of ϵ/ϵ\epsilon^{\prime}/ \epsilon can easily fit to the current experimental data for all values of hadronic matrix elements estimated from various approaches. Also, we show that the experimental values of ϵ/ϵ\epsilon^{\prime}/\epsilon and rare K decays can provide a strong constraint on both mass and mixing of the fourth generation quark. When taking the values of hadronic matrix elements from the lattice or 1/N expansion calculations, a large region of the up-type quark mass mtm_{t^{\prime}} is excluded.Comment: 18 pages, 4 eps figure

    Linear Response, Validity of Semi-Classical Gravity, and the Stability of Flat Space

    Get PDF
    A quantitative test for the validity of the semi-classical approximation in gravity is given. The criterion proposed is that solutions to the semi-classical Einstein equations should be stable to linearized perturbations, in the sense that no gauge invariant perturbation should become unbounded in time. A self-consistent linear response analysis of these perturbations, based upon an invariant effective action principle, necessarily involves metric fluctuations about the mean semi-classical geometry, and brings in the two-point correlation function of the quantum energy-momentum tensor in a natural way. This linear response equation contains no state dependent divergences and requires no new renormalization counterterms beyond those required in the leading order semi-classical approximation. The general linear response criterion is applied to the specific example of a scalar field with arbitrary mass and curvature coupling in the vacuum state of Minkowski spacetime. The spectral representation of the vacuum polarization function is computed in n dimensional Minkowski spacetime, and used to show that the flat space solution to the semi-classical Einstein equations for n=4 is stable to all perturbations on distance scales much larger than the Planck length.Comment: 22 pages: This is a significantly expanded version of gr-qc/0204083, with two additional sections and two new appendices giving a complete, explicit example of the semi-classical stability criterion proposed in the previous pape
    corecore