2,433 research outputs found

    Ultraviolet and soft X--ray photon--photon elastic scattering in an electron gas

    Full text link
    We have considered the processes which lead to elastic scattering between two far ultraviolet or X--ray photons while they propagate inside a solid, modeled as a simple electron gas. The new ingredient, with respect to the standard theory of photon--photon scattering in vacuum, is the presence of low--energy, nonrelativistic electron--hole excitations. Owing to the existence of two--photon vertices, the scattering processes in the metal are predominantly of second order, as opposed to fourth order for the vacuum case. The main processes in second order are dominated by exchange of virtual plasmons between the two photons. For two photons of similar energy Ω\hbar \Omega, this gives rise to a cross section rising like Ω2\Omega^2 up to maximum of around 103210^{-32}~cm2^2, and then decreasing like Ω6\Omega^{-6}. The maximal cross section is found for the photon wavevector kkFk \sim k_{F}, the Fermi surface size, which typically means a photon energy Ω\hbar \Omega in the keV range. Possible experiments aimed at checking the existence of these rare but seemingly measurable elastic photon--photon scattering processes are discussed, using in particular intense synchrotron sources.Comment: 33 pages, TeX, Version 3.1, S.I.S.S.A. preprint 35/93/C

    Electronic, magnetic properties and correlation effects in the layered quaternary iron oxyselenide Na2Fe2Se2O from first principles

    Full text link
    By means of the first-principle calculations, we have investigated electronic, magnetic properties and correlation effects for the newly discovered layered oxyselenide Na2Fe2Se2O. Our results reveal that the electron correlations in the Fe 3d bands promote a transition of Na2Fe2Se2O from magnetic metallic or half-metallic states to the antiferromagnetic Mott-insulating state. In addition, the bonding picture in Na2Fe2Se2O is described as an anisotropic mixture of ionic and covalent contributions.Comment: 12 pages, 3 figure

    PMS51 RACIAL DISPARITIES IN UTILIZATION OF BIOLOGIC AND DISEASE-MODIFYING ANTI-RHEUMATIC DRUGS IN A CALIFORNIA MEDICAID POPULATION WITH RHEUMATOID ARTHRITIS

    Get PDF

    Causal explanation for observed superluminal behavior of microwave propagation in free space

    Full text link
    In this paper we present a theoretical analysis of an experiment by Mugnai and collaborators where superluminal behavior was observed in the propagation of microwaves. We suggest that what was observed can be well approximated by the motion of a superluminal X wave. Furthermore the experimental results are also explained by the so called scissor effect which occurs with the convergence of pairs of signals coming from opposite points of an annular region of the mirror and forming an interference peak on the intersection axis traveling at superluminal speed. We clarify some misunderstandings concerning this kind of electromagnetic wave propagation in vacuum.Comment: 9 pages, 3 figures, accepted for publication in Physics Letters

    Clinical and molecular characterization of HER2 amplified-pancreatic cancer

    Get PDF
    <p>Background: Pancreatic cancer is one of the most lethal and molecularly diverse malignancies. Repurposing of therapeutics that target specific molecular mechanisms in different disease types offers potential for rapid improvements in outcome. Although HER2 amplification occurs in pancreatic cancer, it is inadequately characterized to exploit the potential of anti-HER2 therapies.</p> <p>Methods: HER2 amplification was detected and further analyzed using multiple genomic sequencing approaches. Standardized reference laboratory assays defined HER2 amplification in a large cohort of patients (n = 469) with pancreatic ductal adenocarcinoma (PDAC).</p> <p>Results: An amplified inversion event (1 MB) was identified at the HER2 locus in a patient with PDAC. Using standardized laboratory assays, we established diagnostic criteria for HER2 amplification in PDAC, and observed a prevalence of 2%. Clinically, HER2- amplified PDAC was characterized by a lack of liver metastases, and a preponderance of lung and brain metastases. Excluding breast and gastric cancer, the incidence of HER2-amplified cancers in the USA is >22,000 per annum.</p> <p>Conclusions: HER2 amplification occurs in 2% of PDAC, and has distinct features with implications for clinical practice. The molecular heterogeneity of PDAC implies that even an incidence of 2% represents an attractive target for anti-HER2 therapies, as options for PDAC are limited. Recruiting patients based on HER2 amplification, rather than organ of origin, could make trials of anti-HER2 therapies feasible in less common cancer types.</p&gt

    Thermal reversible breakdown and resistivityswitching in hafnium dioxide

    Get PDF
    HfO2 nanostructures are currently considered to be very promising for different applications including gate oxides in Si transistors and emerging nonvolatile memory cells such as resistive random access memory (RRAM). For RRAM development a clear understanding of switching mechanisms from a HRS to a LRS is demanding. Several models were proposed to explain the switching effect [1-3], however, they did not cover comprehensively experimental observations. It is experimentally shown by means of high resolution transmission electron microscopy that formation of CFs with diameters of 30-50 nm in HfO2 occurred by an electrical pretreatment [2]. When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/2055

    Controlling a leaky tap

    Full text link
    We apply the Ott, Grebogy and Yorke mechanism for the control of chaos to the analytical oscillator model of a leaky tap obtaining good results. We exhibit the robustness of the control against both dynamical noise and measurement noise.A possible way of controlling experimentally a leaky tap using magnetic-field-produced variations in the viscosity of a magnetorheological fluid is suggested.Comment: 14 pages, 12 figures. Submitted to Physics Letters

    Damped Bogoliubov excitations of a condensate interacting with a static thermal cloud

    Full text link
    We calculate the damping of condensate collective excitations at finite temperatures arising from the lack of equilibrium between the condensate and thermal atoms. We neglect the non-condensate dynamics by fixing the thermal cloud in static equilibrium. We derive a set of generalized Bogoliubov equations for finite temperatures that contain an explicit damping term due to collisional exchange of atoms between the two components. We have numerically solved these Bogoliubov equations to obtain the temperature dependence of the damping of the condensate modes in a harmonic trap. We compare these results with our recent work based on the Thomas-Fermi approximation.Comment: 9 pages, 3 figures included. Submitted to PR

    Theory of coherent Bragg spectroscopy of a trapped Bose-Einstein condensate

    Full text link
    We present a detailed theoretical analysis of Bragg spectroscopy from a Bose-Einstein condensate at T=0K. We demonstrate that within the linear response regime, both a quantum field theory treatment and a meanfield Gross-Pitaevskii treatment lead to the same value for the mean evolution of the quasiparticle operators. The observable for Bragg spectroscopy experiments, which is the spectral response function of the momentum transferred to the condensate, can therefore be calculated in a meanfield formalism. We analyse the behaviour of this observable by carrying out numerical simulations in axially symmetric three-dimensional cases and in two dimensions. An approximate analytic expression for the observable is obtained and provides a means for identifying the relative importance of three broadening and shift mechanisms (meanfield, Doppler, and finite pulse duration) in different regimes. We show that the suppression of scattering at small values of q observed by Stamper-Kurn et al. [Phys. Rev. Lett. 83, 2876 (1999)] is accounted for by the meanfield treatment, and can be interpreted in terms of the interference of the u and v quasiparticle amplitudes. We also show that, contrary to the assumptions of previous analyses, there is no regime for trapped condensates for which the spectral response function and the dynamic structure factor are equivalent. Our numerical calculations can also be performed outside the linear response regime, and show that at large laser intensities a significant decrease in the shift of the spectral response function can occur due to depletion of the initial condensate.Comment: RevTeX4 format, 16 pages plus 7 eps figures; Update to published version: minors changes and an additional figure. (To appear in Phys. Rev. A

    Landau and dynamical instabilities of Bose-Einstein condensates with superfluid flow in a Kronig-Penney potential

    Full text link
    We study the elementary excitations of Bose-Einstein condensates in a one-dimensional periodic potential and discuss the stability of superfluid flow based on the Kronig-Penney model. We analytically solve the Bogoliubov equations and calculate the excitation spectrum. The Landau and dynamical instabilities occur in the first condensate band when the superfluid velocity exceeds certain critical values, which agrees with the result of condensates in a sinusoidal potential. It is found that the onset of the Landau instability coincides with the point where the perfect transmission of low-energy excitations is forbidden, while the dynamical instability occurs when the effective mass is negative. It is well known that the condensate band has a peculiar structure called swallowtail when the periodic potential is shallow compared to the mean field energy. We find that the upper side of the swallowtail is dynamically unstable although the excitations have the linear dispersion reflecting the positive effective mass.Comment: 6 pages, 2 figures, Proceedings of the International Symposium on Quantum Fluids and Solids (QFS2006
    corecore