401 research outputs found

    Learning to Auto Weight: Entirely Data-driven and Highly Efficient Weighting Framework

    Full text link
    Example weighting algorithm is an effective solution to the training bias problem, however, most previous typical methods are usually limited to human knowledge and require laborious tuning of hyperparameters. In this paper, we propose a novel example weighting framework called Learning to Auto Weight (LAW). The proposed framework finds step-dependent weighting policies adaptively, and can be jointly trained with target networks without any assumptions or prior knowledge about the dataset. It consists of three key components: Stage-based Searching Strategy (3SM) is adopted to shrink the huge searching space in a complete training process; Duplicate Network Reward (DNR) gives more accurate supervision by removing randomness during the searching process; Full Data Update (FDU) further improves the updating efficiency. Experimental results demonstrate the superiority of weighting policy explored by LAW over standard training pipeline. Compared with baselines, LAW can find a better weighting schedule which achieves much more superior accuracy on both biased CIFAR and ImageNet.Comment: Accepted by AAAI 202

    Recognition of Odor Characteristics Based on BP Neural Network

    Get PDF
    This paper introduces the basic principle and calculation steps of BP neural network algorithm for classification and prediction of odor characteristic parameters. Using the PEN3 electronic nose collects the volatile components of milk and programming BP neural network algorithm under MATLAB condition. This paper validate the use of BP neural network algorithm on milk quality prediction is effective

    Remote-Sensing Image Classification Based on an Improved Probabilistic Neural Network

    Get PDF
    This paper proposes a hybrid classifier for polarimetric SAR images. The feature sets consist of span image, the H/A/α decomposition, and the GLCM-based texture features. Then, a probabilistic neural network (PNN) was adopted for classification, and a novel algorithm proposed to enhance its performance. Principle component analysis (PCA) was chosen to reduce feature dimensions, random division to reduce the number of neurons, and Brent’s search (BS) to find the optimal bias values. The results on San Francisco and Flevoland sites are compared to that using a 3-layer BPNN to demonstrate the validity of our algorithm in terms of confusion matrix and overall accuracy. In addition, the importance of each improvement of the algorithm was proven

    Association of Lumican Gene with Susceptibility to Pathological Myopia in the Northern Han Ethnic Chinese

    Get PDF
    Pathological myopia is a severe hereditary ocular disease leading to blindness. It is urgent and very important to find the pathogenesis and therapy for this disease. The purpose of the study is to analyze sequences of lumican and decorin genes with pathological myopia(PM) and control subjects to verify the relationship between lumican, decorin genes and PM in Northern Han Chinese. We collected and analyzed the blood samples of 94 adults (including 12 pedigree cases and 82 sporadic cases) with PM and 90 controls in the northern Han ethnic Chinese. Genotyping was performed by direct sequencing after polymerase chain reaction(PCR) amplification and allele frequencies were tested for Hardy-Weinberg equilibrium. Univariate analysis revealed significant differences between two groups for three SNPs: rs3759223 (C → T) and rs17853500 (T → C) of the lumican gene and rs74419 (T → C) of decorin gene with (P < .05) for all their genotype distribution and allele frequency. There is no significant difference for incidence of these mutations between pedigree and sporadic group (P > .05). The results suggested that the sequence variants in 5′-regulatory region of lumican gene and 3'UTR of decorin gene were associated significantly with PM in Northern Han Chinese. Further studies are needed to confirm finally whether the two genes are the virulence genes of PM

    Tectonic History and Coalbed Gas Genesis

    Get PDF

    UCAV Path Planning by Fitness-Scaling Adaptive Chaotic Particle Swarm Optimization

    Get PDF
    Path planning plays an extremely important role in the design of UCAVs to accomplish the air combat task fleetly and reliably. The planned path should ensure that UCAVs reach the destination along the optimal path with minimum probability of being found and minimal consumed fuel. Traditional methods tend to find local best solutions due to the large search space. In this paper, a Fitness-scaling Adaptive Chaotic Particle Swarm Optimization (FAC-PSO) approach was proposed as a fast and robust approach for the task of path planning of UCAVs. The FAC-PSO employed the fitness-scaling method, the adaptive parameter mechanism, and the chaotic theory. Experiments show that the FAC-PSO is more robust and costs less time than elite genetic algorithm with migration, simulated annealing, and chaotic artificial bee colony. Moreover, the FAC-PSO performs well on the application of dynamic path planning when the threats cruise randomly and on the application of 3D path planning
    corecore