48 research outputs found

    A method for protein extraction from different subcellular fractions of laticifer latex in Hevea brasiliensis compatible with 2-DE and MS

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Proteomic analysis of laticifer latex in <it>Hevea brasiliensis </it>has been received more significant attentions. However, the sticky and viscous characteristic of rubber latex as cytoplasm of laticifer cells and the complication of laticifer latex membrane systems has made it challenge to isolate high-quality proteins for 2-DE and MS.</p> <p>Results</p> <p>Based on the reported Borax/PVPP/Phenol (BPP) protocol, we developed an efficient method for protein preparation from different latex subcellular fractions and constructed high-resolution reference 2-DE maps. The obtained proteins from both total latex and C-serum fraction with this protocol generate more than one thousand protein spots and several hundreds of protein spots from rubber particles as well as lutoid fraction and its membranes on the CBB stained 2-DE gels. The identification of 13 representative proteins on 2-DE gels by MALDI TOF/TOF MS/MS suggested that this method is compatible with MS.</p> <p>Conclusion</p> <p>The proteins extracted by this method are compatible with 2-DE and MS. This protein preparation protocol is expected to be used in future comparative proteomic analysis for natural rubber latex.</p

    Mutation in Folate Metabolism Causes Epigenetic Instability and Transgenerational Effects on Development

    Get PDF
    SummaryThe importance of maternal folate consumption for normal development is well established, yet the molecular mechanism linking folate metabolism to development remains poorly understood. The enzyme methionine synthase reductase (Mtrr) is necessary for utilization of methyl groups from the folate cycle. We found that a hypomorphic mutation of the mouse Mtrr gene results in intrauterine growth restriction, developmental delay, and congenital malformations, including neural tube, heart, and placental defects. Importantly, these defects were dependent upon the Mtrr genotypes of the maternal grandparents. Furthermore, we observed widespread epigenetic instability associated with altered gene expression in the placentas of wild-type grandprogeny of Mtrr-deficient maternal grandparents. Embryo transfer experiments revealed that Mtrr deficiency in mice lead to two distinct, separable phenotypes: adverse effects on their wild-type daughters’ uterine environment, leading to growth defects in wild-type grandprogeny, and the appearance of congenital malformations independent of maternal environment that persist for five generations, likely through transgenerational epigenetic inheritance.PaperFlic

    Identification and Characterization of Paramyosin from Cyst Wall of Metacercariae Implicated Protective Efficacy against Clonorchis sinensis Infection

    Get PDF
    Human clonorchiasis has been increasingly prevalent in recent years and results in a threat to the public health in epidemic regions, motivating current strategies of vaccines to combat Clonorchis sinensis (C. sinensis). In this study, we identified C. sinensis paramyosin (CsPmy) from the cyst wall proteins of metacercariae by proteomic approaches and characterized the expressed recombinant pET-26b-CsPmy protein (101 kDa). Bioinformatics analysis indicated that full-length sequences of paramyosin are conserved in helminthes and numerous B-cell/T-cell epitopes were predicted in amino acid sequence of CsPmy. Western blot analysis showed that CsPmy was expressed at four life stages of C. sinensis, both cyst wall proteins and soluble tegumental components could be probed by anti-CsPmy serum. Moreover, immunolocalization results revealed that CsPmy was specifically localized at cyst wall and excretory bladder of metacercaria, as well as the tegument, oral sucker and vitellarium of adult worm. Both immunoblot and immunolocalization results demonstrated that CsPmy was highly expressed at the stage of adult worm, metacercariae and cercaria, which could be supported by real-time PCR analysis. Both recombinant protein and nucleic acid of CsPmy showed strong immunogenicity in rats and induced combined Th1/Th2 immune responses, which were reflected by continuous high level of antibody titers and increased level of IgG1/IgG2a subtypes in serum. In vaccine trials, comparing with control groups, both CsPmy protein and DNA vaccine exhibited protective effect with significant worm reduction rate of 54.3% (p<0.05) and 36.1% (p<0.05), respectively. In consistence with immune responses in sera, elevated level of cytokines IFN-γ and IL-4 in splenocytes suggested that CsPmy could induce combined cellular immunity and humoral immunity in host. Taken together, CsPmy could be a promising vaccine candidate in the prevention of C. sinensis regarding its high immunogenicity and surface localization

    Cerebrovascular reactivity among native-raised high altitude residents: an fMRI study

    Get PDF
    Background: The impact of long term residence on high altitude (HA) on human brain has raised concern among researchers in recent years. This study investigated the cerebrovascular reactivity among native-born high altitude (HA) residents as compared to native sea level (SL) residents. The two groups were matched on the ancestral line, ages, gender ratios, and education levels. A visual cue guided maximum inspiration task with brief breath holding was performed by all the subjects while Blood-Oxygenation-Level-Dependent (BOLD) functional Magnetic Resonance Imaging (fMRI) data were acquired from them

    Structural Modifications of the Brain in Acclimatization to High-Altitude

    Get PDF
    Adaptive changes in respiratory and cardiovascular responses at high altitude (HA) have been well clarified. However, the central mechanisms underlying HA acclimatization remain unclear. Using voxel-based morphometry (VBM) and diffusion tensor imaging (DTI) with fractional anisotropy (FA) calculation, we investigated 28 Han immigrant residents (17–22 yr) born and raised at HA of 2616–4200 m in Qinghai-Tibetan Plateau for at least 17 years and who currently attended college at sea-level (SL). Their family migrated from SL to HA 2–3 generations ago and has resided at HA ever since. Control subjects were matched SL residents. HA residents (vs. SL) showed decreased grey matter volume in the bilateral anterior insula, right anterior cingulate cortex, bilateral prefrontal cortex, left precentral cortex, and right lingual cortex. HA residents (vs. SL) had significantly higher FA mainly in the bilateral anterior limb of internal capsule, bilateral superior and inferior longitudinal fasciculus, corpus callosum, bilateral superior corona radiata, bilateral anterior external capsule, right posterior cingulum, and right corticospinal tract. Higher FA values in those regions were associated with decreased or unchanged radial diffusivity coinciding with no change of longitudinal diffusivity in HA vs. SL group. Conversely, HA residents had lower FA in the left optic radiation and left superior longitudinal fasciculus. Our data demonstrates that HA acclimatization is associated with brain structural modifications, including the loss of regional cortical grey matter accompanied by changes in the white matter, which may underlie the physiological adaptation of residents at HA

    The role of character positional frequency on Chinese word learning during natural reading

    Get PDF
    Readers? eye movements were recorded to examine the role of character positional frequency on Chinese lexical acquisition during reading and its possible modulation by word spacing. In Experiment 1, three types of pseudowords were constructed based on each character?s positional frequency, providing congruent, incongruent, and no positional word segmentation information. Each pseudoword was embedded into two sets of sentences, for the learning and the test phases. In the learning phase, half the participants read sentences in word-spaced format, and half in unspaced format. In the test phase, all participants read sentences in unspaced format. The results showed an inhibitory effect of character positional frequency upon the efficiency of word learning when processing incongruent pseudowords both in the learning and test phase, and also showed facilitatory effect of word spacing in the learning phase, but not at test. Most importantly, these two characteristics exerted independent influences on word segmentation. In Experiment 2, three analogous types of pseudowords were created whilst controlling for orthographic neighborhood size. The results of the two experiments were consistent, except that the effect of character positional frequency was absent in the test phase in Experiment 2. We argue that the positional frequency of a word?s constituent characters may influence the character-to-word assignment in a process that likely incorporates both lexical segmentation and identification

    Cerebellum engages in automation of verb-generation skill

    No full text
    Numerous studies have shown cerebellar involvement in item-specific association, a form of explicit learning. However, very few have demonstrated cerebellar participation in automation of non-motor cognitive tasks. Applying fMRI to a repeated verb-generation task, we sought to distinguish cerebellar involvement in learning of item-specific noun-verb association and automation of verb generation skill. The same set of nouns was repeated in six verb-generation blocks so that subjects practiced generating verbs for the nouns. The practice was followed by a novel block with a different set of nouns. The cerebellar vermis (IV/ V) and the right cerebellar lobule VI showed decreased activation following practice; activation in the right cerebellar Crus I was significantly lower in the novel challenge than in the initial verb-generation task. Furthermore, activation in this region during well-practiced blocks strongly correlated with improvement of behavioral performance in both the well-practiced and the novel blocks, suggesting its role in the learning of general mental skills not specific to the practiced noun-verb pairs. Therefore, the cerebellum processes both explicit verbal associative learning and automation of cognitive tasks. Different cerebellar regions predominate in this processing: lobule VI during the acquisition of item-specific association, and Crus I during automation of verb-generation skills through practice

    Physiological and Proteomic Analyses of Molybdenum- and Ethylene-Responsive Mechanisms in Rubber Latex

    No full text
    Molybdenum (Mo) is an essential micronutrient in many plants. In the rubber tree Hevea brasiliensis, Mo application can reduce the shrinkage of the tapping line, decrease tapping panel dryness, and finally increase rubber latex yield. After combined Mo with ethylene (Eth), these effects become more obvious. However, the molecular mechanism remains unclear. Here, we compared the changed patterns of physiological parameters and protein accumulation in rubber latex after treated with Mo and/or Eth. Our results demonstrated that both Eth and Mo can improve the contents of thiol, sucrose, and dry yield in rubber latex. However, lutoid bursting is significantly inhibited by Mo. Comparative proteomics identified 169 differentially expressed proteins, including 114 unique proteins, which are mainly involved in posttranslational modification, carbohydrate metabolism, and energy production. The abundances of several proteins involved in rubber particle aggregation are decreased upon Mo stimulation, while many enzymes related to natural rubber biosynthesis are increased. Comparison of the accumulation patterns of 25 proteins revealed that a large portion of proteins have different changed patterns with their gene expression levels. Activity assays of six enzymes revealed that Mo stimulation can increase latex yield by improving the activity of some Mo-responsive enzymes. These results not only deepen our understanding of the rubber latex proteome but also provide new insights into the molecular mechanism of Mo-stimulated rubber latex yield

    Electrophysiological correlates of proactive interference in the 'Recent Probes' verbal working memory task

    No full text
    Using event-related potentials (ERPs), the present study examined the temporal dynamics of proactive interference in working memory using a recent probes task. Participants memorized and retained a target set of four letters over a short retention interval. They then responded to a recognition probe by judging whether it was from the memory set. ERP waveforms elicited by positive probes compared to those from negative probes showed positive shifts in a fronto-central early N2 component and a parietal late positive component (LPC). The LPC was identified as the electrophysiological signature of proactive interference, as it differentiated between two types of negative probes defined based on whether they were recently encountered. These results indicate that the proactive interference we observed arises from a mismatch between familiarity and contextual information during recognition memory. When considered together with related studies in the literature, the results also suggest that there are different forms of proactive interference associated with different neural correlates. (c) 2010 Elsevier Ltd. All rights reserved
    corecore