5 research outputs found

    Chord-based Resource Identifier-to-Locator Mapping and Searching for the Future Internet

    Get PDF
    A great many problems, such as scalability, mapping data searching, high frequency update of mapping data, arise in the future network resource mapping system for its vast data processing need. Future Network Chord (FN Chord), an algorithm based on Chord and aims at solving the resources identity mapping and searching problem, is put forward by taking advantage of the qualities of scalability, rapid searching speed, high searching efficiency and flexible naming of chord in order to solve this problem. What’s more, an extra interest node index table for FN Chord is designed to record the hotspot resource mapping location in the paper. So, the resource searching strategy, which is named as Interest Index Table Future Network Chord (IIT-FN Chord) is proposed to search the resource in the paper. The entropy weight method is used to calculate the node interest level according the interest nodes’ resource item online time and visited times and to renew the interest index table. Moreover, probability replacement method is proposed to replace the outdated item on interest index table with new item. Simulation results show that the algorithm can decrease the average searching latency, average searching hops and thus increases the searching efficiency for the resource searching

    An Expeditious Neutralization Assay for Porcine Reproductive and Respiratory Syndrome Virus Based on a Recombinant Virus Expressing Green Fluorescent Protein

    No full text
    Due to the extensive genetic and antigenic variation in Porcine Reproductive and Respiratory Syndrome Virus (PRRSV), as well as its rapid mutability and evolution, PRRS prevention and control can be challenging. An expeditious and sensitive neutralization assay for PRRSV is presented to monitor neutralizing antibodies (NAbs) in serum during vaccine research. Here, a PRRSV expressing eGFP was successfully rescued with reverse genetics based on the infectious clone HuN4-F112-eGFP which we constructed. The fluorescent protein expressions of the reporter viruses remained stable for at least five passages. Based on this reporter virus, the neutralization assay can be easily used to evaluate the level of NAbs by counting cells with green fluorescence. Compared with the classical CPE assay, the newly developed assay increases sensitivity by one- to four-fold at the early antibody response stage, thus saving 2 days of assay waiting time. By using this assay to unveil the dynamics of neutralizing antibodies against PRRSV, priming immunity through either a single virulent challenge or only vaccination could produce limited NAbs, but re-infection with PRRSV would induce a faster and stronger NAb response. Overall, the novel HuN4-F112-eGFP-based neutralization assay holds the potential to provide a highly efficient platform for evaluating the next generation of PRRS vaccines
    corecore