114,707 research outputs found

    The cylindrical antenna with non-reflecting resistive loading

    Get PDF
    Distribution of current along center-driven cylindrical antenna with variable internal impedance per unit lengt

    Invariance of density correlations with charge density in polyelectrolyte solutions

    Full text link
    We present a theory for the equilibrium structure of polyelectrolyte solutions. The main element is a simple, new optimization scheme that allows theories such as the random phase approximation (RPA) to handle the harsh repulsive forces present in such systems. Comparison is made with data from recent neutron scattering experiments of randomly charged, hydrophilic polymers in salt-free, semi-dilute solution at various charge densities. Models with varying degrees of realism are examined. The usual explanation of the invariance observed at high charge density has been counterion condensation. However, when polymer-polymer correlations are treated properly, we find that modeling polymer-counterion correlations at the level of Debye-Huckel theory is sufficient.Comment: 4 pages, 2 figure

    Towards a guided atom interferometer based on a superconducting atom chip

    Full text link
    We evaluate the realization of a novel geometry of a guided atom interferometer based on a high temperature superconducting microstructure. The interferometer type structure is obtained with a guiding potential realized by two current carrying superconducting wires in combination with a closed superconducting loop sustaining a persistent current. We present the layout and realization of our superconducting atom chip. By employing simulations we discuss the critical parameters of the interferometer guide in particular near the splitting regions of the matter waves. Based on measurements of the relevant chip properties we discuss the application of a compact and reliable on-chip atom interferometer.Comment: 14 pages, 7 figures, accepted for New Journal of Physic

    A simple theory of dipole antennas

    Get PDF
    Simple and quantitatively accurate representation of current distribution in dipole antenna

    An Upper Limit on Omega_matter Using Lensed Arcs

    Full text link
    We use current observations on the number statistics of gravitationally lensed optical arcs towards galaxy clusters to derive an upper limit on the cosmological mass density of the Universe. The gravitational lensing statistics due to foreground clusters combine properties of both cluster evolution, which is sensitive to the matter density, and volume change, which is sensitive to the cosmological constant. The uncertainties associated with the predicted number of lensing events, however, currently do not allow one to distinguish between flat and open cosmological models with and without a cosmological constant. Still, after accounting for known errors, and assuming that clusters in general have dark matter core radii of the order ~ 35 h^-1 kpc, we find that the cosmological mass density, Omega_m, is less than 0.56 at the 95% confidence. Such a dark matter core radius is consistent with cluster potentials determined recently by detailed numerical inversions of strong and weak lensing imaging data. If no core radius is present, the upper limit on Omega_m increases to 0.62 (95% confidence level). The estimated upper limit on Omega_m is consistent with various cosmological probes that suggest a low matter density for the Universe.Comment: 6 pages, 3 figures. Accepted version (ApJ in press

    Conserved quantities in non-abelian monopole fields

    Full text link
    Van Holten's covariant Hamiltonian framework is used to find conserved quantities for an isospin-carrying particle in a non-Abelian monopole-like field. For a Wu-Yang monopole we find the most general scalar potential such that the combined system admits a conserved Runge-Lenz vector. It generalizes the fine-tuned inverse-square plus Coulomb potential, found before by McIntosh and Cisneros, and by Zwanziger, for a charged particle in the field of a Dirac monopole. Following Feh\'er, the result is interpreted as describing motion in the asymptotic field of a self-dual Prasad-Sommerfield monopole. In the effective non-Abelian field for nuclear motion in a diatomic molecule due to Moody, Shapere and Wilczek, a conserved angular momentum is constructed, despite the non-conservation of the electric charge. No Runge-Lenz vector has been found.Comment: 8 pages, RevTex no figures. An error corrected and a new Section adde

    Representing Partitions on Trees

    Get PDF
    In evolutionary biology, biologists often face the problem of constructing a phylogenetic tree on a set X of species from a multiset Π of partitions corresponding to various attributes of these species. One approach that is used to solve this problem is to try instead to associate a tree (or even a network) to the multiset ΣΠ consisting of all those bipartitions {A,X − A} with A a part of some partition in Π. The rational behind this approach is that a phylogenetic tree with leaf set X can be uniquely represented by the set of bipartitions of X induced by its edges. Motivated by these considerations, given a multiset Σ of bipartitions corresponding to a phylogenetic tree on X, in this paper we introduce and study the set P(Σ) consisting of those multisets of partitions Π of X with ΣΠ = Σ. More specifically, we characterize when P(Σ) is non-empty, and also identify some partitions in P(Σ) that are of maximum and minimum size. We also show that it is NP-complete to decide when P(Σ) is non-empty in case Σ is an arbitrary multiset of bipartitions of X. Ultimately, we hope that by gaining a better understanding of the mapping that takes an arbitrary partition system Π to the multiset ΣΠ, we will obtain new insights into the use of median networks and, more generally, split-networks to visualize sets of partitions
    corecore