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REPRESENTING PARTITIONS ON TREES∗

K. T. HUBER†, V. MOULTON† , C. SEMPLE‡ , AND T. WU†

Abstract. In evolutionary biology, biologists often face the problem of constructing a phyloge-
netic tree on a set X of species from a multiset Π of partitions corresponding to various attributes
of these species. One approach that is used to solve this problem is to try instead to associate a tree
(or even a network) to the multiset ΣΠ consisting of all those bipartitions {A,X −A} with A a part
of some partition in Π. The rationale behind this approach is that a phylogenetic tree with leaf set
X can be uniquely represented by the set of bipartitions of X induced by its edges. Motivated by
these considerations, given a multiset Σ of bipartitions corresponding to a phylogenetic tree on X,
in this paper we introduce and study the set P(Σ) consisting of those multisets of partitions Π of
X with ΣΠ = Σ. More specifically, we characterize when P(Σ) is nonempty and also identify some
partitions in P(Σ) that are of maximum and minimum size. We also show that it is NP-complete
to decide when P(Σ) is nonempty in the case when Σ is an arbitrary multiset of bipartitions of X.
Ultimately, we hope that by gaining a better understanding of the mapping that takes an arbitrary
partition system Π to the multiset ΣΠ, we will obtain new insights into the use of median networks
and, more generally, split networks, to visualize sets of partitions.

Key words. phylogenetics, partition systems, compatibility, split systems, X-trees

AMS subject classifications. 05C05, 92D15

DOI. 10.1137/130906192

1. Introduction. In evolutionary biology, biologists are often faced with the
task of constructing a phylogenetic tree (i.e., an unrooted, edge-weighted tree without
degree-two vertices and leaf set X) that represents a multiset Π of partitions of a finite
set X of species or taxa. Such multisets of partitions (or partition systems) usually
arise from some collection of attributes or states of the species in question (e.g.,
“wings” versus “no wings” or the four possible nucleotides in the columns of some
molecular sequence alignment). It is well known that a phylogenetic tree with leaf set
X is determined by the bipartitions or splits of X that are induced by its edges [5].
Hence, when trying to derive such trees from multistate data, biologists sometimes
consider instead the multiset ΣΠ of splits of X consisting of all those {A,X − A}
with A ∈ π for some partition π contained in a partition system Π induced by the
data [1, 13, 14]. The aim then becomes associating a tree (or possibly a network) to
the multiset ΣΠ.

As an example of this process, for the set X = {1, 2, 3, 4, 5, 6}, consider the set
of partitions Π1 = {123|4|56, 1|2|3456, 3|12456, 5|6|1234} on X (where, e.g., 123|4|56
denotes the partition {{1, 2, 3}, {4}, {5, 6}}). Then the multiset ΣΠ1 is represented
(uniquely) by the phylogenetic tree in Figure 1. Intriguingly, Π1 is not the only
partition system that gives rise to the tree depicted in Figure 1. For example, the set
Π2 = {123|4|5|6, 1|2|3456, 3|12456, 56|1234} gives rise to precisely the same tree (or,
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REPRESENTING PARTITIONS ON TREES 1153

in other words, ΣΠ1 = ΣΠ2). Thus, given a multiset Σ of splits of X that is compatible
(i.e., corresponds to a phylogenetic tree), it is of interest to better understand the set
P(Σ) that consists of all those partition systems Π on X such that ΣΠ = Σ holds. As
we shall see, the set P(Σ) can be quite complicated in general. For example, even for
the simple tree in Figure 1 it can be shown that P(ΣΠ1) consists of Π1 and Π2 as well
as the sets Π3 = {12|3|4|56, 1|2|3|456, 5|6|1234}, Π4 = {12|3|4|5|6, 1|2|3|456, 56|1234},
Π5 = {1|2|3|4|56, 12|3|456, 5|6|1234}, and Π6 = {1|2|3|4|5|6, 12|3|456, 56|1234}.

Fig. 1. A tree that represents the multiset ΣΠ1
of splits on the set X = {1, 2, 3, 4, 5, 6} given

in the text. The removal of any edge of the tree gives a split of X, with multiplicity given by the
weight in bold assigned to the edge (all unlabelled edges have weight 1). For example, the bold edge
gives rise to the split 123|456.

Although these considerations all appear rather abstract, our study of the set
P(Σ) was motivated by its appearance in the construction of median networks. These
networks generalize phylogenetic trees and are commonly used to visualize complex
evolutionary relationships arising from mitochondrial sequences [2, 4, 16]. Median
networks can be directly constructed from splits [6]. Moreover, given a multiple
sequence alignment of a setX of sequences, one way to derive splits before constructing
a median network is to convert each nonconstant column into a partition of X so as
to give a multiset Π of partitions of X , and then construct the multiset ΣΠ (see, e.g.,
[1, 14]). Thus, we expect that by gaining a better understanding of the set P(Σ)
(also for general split systems Σ) we will be able to obtain new insights into the use of
median networks (and, more generally, split networks; cf. [15]) to represent partitions.
In addition, through considerations such as those presented in [3], we hope that our
results will help to further clarify the relationships between median and quasi-median
networks given in [13].

We now present an overview of our main results. In the following two sections we
present some notation and terminology as well as some preliminary results that will
be used throughout the paper. Then, in section 4, we characterize those compatible
multisets of splits Σ for which P(Σ) is nonempty (Theorem 4.2). In addition, for Σ
a compatible multiset of splits of X , we show that if P(Σ) is nonempty, then there is
always a unique partition system Π in P(Σ) which is strongly compatible; i.e., for all
π1, π2 ∈ Π either π1 = π2 or there are some A ∈ π1, B ∈ π2 such that A ∪B = X [8].
For example, for the multiset Σ of splits giving rise to the tree depicted in Figure 1,
the set Π1 is the unique strongly compatible partition system in P(Σ).

As the example above illustrates, the size of the elements in P(Σ) can vary (e.g.,
the size of Π1 is 4, whereas Π6 has size 3). We are therefore interested in understanding
the maximum- and minimum-sized elements in this set. In section 5, we show that
the unique, strongly compatible partition system in P(Σ) is always of maximum size.
In the subsequent section, we then focus on minimum-sized elements of P(Σ), giving
a method to construct such a partition system. In general, it appears to be a difficult
problem to characterize the maximum- and minimum-sized partition systems in P(Σ)
for a compatible multiset Σ of splits. However, in section 6, we characterize the
minimum-sized elements for a special type of multiset of splits that corresponds to a
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1154 K. T. HUBER, V. MOULTON, C. SEMPLE, AND T. WU

rooted tree in which the root is the same distance from all of the leaves in the tree.
In section 8, we investigate a related algorithmic question: Given an arbitrary

split system Σ on X , can we decide in polynomial time in the size of X whether there
exists a partition system Π of X such that ΣΠ = Σ? By reduction from the cubic edge
coloring problem, we show that this problem is NP-complete, even if Σ is an arbitrary
set; that is, the multiplicity of each split in Σ is equal to 1 (Theorem 8.1). This
indicates that it might be difficult in general to extend our main results to arbitrary
multisets of splits. In section 9, we discuss how the mapping from partition systems
to split systems obtained by taking a partition system Π to the split system ΣΠ could
be studied in a more general setting, and we mention some open problems that this
leads to.

Before proceeding we note that the problem of representing partitions (or char-
acters) by trees has also been studied in the context of the perfect phylogeny problem.
This problem is concerned with representing partitions convexly on a phylogenetic
tree, and a great deal of related theory has been developed (cf., e.g., [17, Chapter 4]
and also [9, 11, 18] for more recent results). However, this approach differs from ours
since, for example, there exist sets Π of partitions all of whose elements are convex
on some phylogenetic tree for which ΣΠ is not compatible.

2. Preliminaries.

Multisets. If S is a finite nonempty set, a multiset chosen from S is a function
m from S into the set of nonnegative integers Z≥0. The set S is sometimes called
its underlying set. For an element t in S, the value m(t) is the multiplicity of t. For
example, let S = {1, 2, 3, 4}. Then the multiset {1, 1, 2, 2, 2, 3} denotes the function m
from S into Z≥0 with m(1) = 2, m(2) = 3, m(3) = 1, and m(4) = 0. The multiplicity
of 2 is 3, while the multiplicity of 4 is 0. The size |M | of a multisetM with underlying
set S is the sum of the multiplicities over all elements in S. Let m1 and m2 be two
functions from S into Z≥0, and let S1 and S2 denote the multisets corresponding to
m1 and m2, respectively. We denote the multiset union of S1 and S2 by S1

⊎
S2,

where S1

⊎
S2 is the function from S into Z≥0 defined by m1(t) +m2(t) for all t ∈ S.

Moreover, we denote the multiset difference of S1 and S2 by S1 − S2, where S1 − S2

is the function from S into Z≥0 defined by max{0,m1(t)−m2(t)} for all t ∈ S.

Weak X-trees. Throughout the paper, X will always denote a finite set of size
at least 2. A weak X-tree T is an ordered pair (T ;φ), where T is a tree with vertex
set V and φ : X → V is a map with the property that, for each vertex v ∈ V of
degree one, v ∈ φ(X). For convenience, we refer to the vertices and edges of T as the
vertices and edges of T , respectively, and write V (T ) for V (T ) and E(T ) for E(T ).
A vertex v of T is labelled if v ∈ φ(X); otherwise, v is unlabelled. Given u, v ∈ V , we
denote the length of the path joining u and v by dT (u, v). Sometimes we will also use
dT (u, v) rather than dT (u, v). A weak X-tree T is an X-tree if it additionally has the
property that each degree-two vertex is labelled. Note that a phylogenetic X-tree T
is an X-tree in which φ is a bijective map from X to the leaf set of T . We say that
two weak X-trees T = (T ;φ) and T ′ = (T ′;φ′) are isomorphic, denoted by T ∼= T ′,
if there exists a bijective map ψ : V (T ) → V (T ′) that induces a graph isomorphism
between T and T ′ for which φ′(x) = ψ(φ(x)) holds for all x ∈ X .

Note that weak X-trees are closely related to weighted X-trees, where an X-
tree is weighted if each edge is assigned a positive integer weight. For example, the
phylogenetic tree depicted in Figure 1 is equivalent to a weak X-tree in which each
edge with weight 2 is subdivided into two edges by inserting an extra vertex. Indeed,
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REPRESENTING PARTITIONS ON TREES 1155

we can translate between weightedX-trees and weakX-trees in general by inserting or
suppressing unlabelled degree-two vertices in a similar manner. However, in this paper
we will use weak X-trees rather than weighted X-trees since they are more convenient
for many of our proofs (e.g., their vertices and edges can be used to represent certain
partition systems).

Compatible split systems and hierarchies. As mentioned in the introduc-
tion, a split of X , or, equivalently, an X-split, is a bipartition of X into two nonempty
sets, that is, a partition π = {A1, A2, . . . , At} of X with t ≥ 2 in which each subset
Ai, i ∈ {1, . . . , t}, is nonempty and t = 2 (rather than t ≥ 2 as is the case for a
general partition of X). We will refer to the subsets Ai as parts of π, and, to simplify
notation, we write {A1, A2, . . . , At} as A1|A2| · · · |At, where the ordering of the parts
of π is irrelevant. A multiset of X-splits is called a split system on X . Split systems
on X naturally arise in the context of weak X-trees. In particular, let T = (T ;φ) be
a weak X-tree, and let e be an edge of T . We denote by σe the X-split A|(X − A),
where A is one of the two maximal subsets of X such that e is not traversed on the
path from φ(x) to φ(y) for all x, y ∈ A. This X-split corresponds to, or, equivalently,
is displayed by, e in T . Note that, as T is a weakX-tree, it is possible that, for distinct
edges e and f , we have σe = σf . We denote the split system on X corresponding to
the edges of T by Σ(T ), that is,

Σ(T ) =
⊎

e∈E(T )

{σe}.

A pair of X-splits A1|B1 and A2|B2 is compatible if at least one of the sets A1∩A2,
A1 ∩B2, B1 ∩A2, and B1 ∩B2 is the empty set. A split system Σ on X is compatible
if the splits in Σ are pairwise compatible. The following theorem is a straightforward
generalization of the splits-equivalence theorem [5] (also see [17, Theorem 3.1.4]).

Theorem 2.1. Let Σ be a split system on X. Then there is a weak X-tree T
such that Σ = Σ(T ) if and only if Σ is compatible. Moreover, if such a weak X-tree
exists, then, up to isomorphism, T is unique.

In light of this last result, if Σ is a compatible split system on X , we denote the
unique weak X-tree T for which Σ(T ) = Σ holds by TΣ. Note that in the case when
Σ = Σ(T ) for a weak X-tree T , we will write P(T ) rather than P(Σ(T )).

An analogue of Theorem 2.1 holds for trees having a root. To make this statement
more precise, we introduce some further terminology. A rooted weak X-tree Tρ is an
ordered pair (Tρ;φ), where Tρ is a rooted tree with root ρ which has degree at least
two and vertex set V , and φ : X → V −{ρ} is a map with the property that, for each
vertex v ∈ V of degree one, v ∈ φ(X). Note that if we view Tρ as an unrooted tree
with ρ as ordinary interior vertex, we obtain a weak X-tree. We denote this weak
X-tree by T −

ρ .

A cluster of X is a nonempty subset of X , and it is proper if it is distinct from X .
Let Tρ be a rooted weak X-tree, and let e be an edge of Tρ. The proper subset of X
consisting of those elements that label a vertex in Tρ whose path to the root traverses
e is denoted by Ce. This cluster Ce corresponds to, or, equivalently, is displayed by,
e in Tρ. We denote the multiset of clusters of X corresponding to the edges of Tρ by
H(Tρ), that is,

H(Tρ) =
⊎

e∈E(Tρ)

{Ce}.
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1156 K. T. HUBER, V. MOULTON, C. SEMPLE, AND T. WU

It is straightforward to show that this multiset of subsets of X is a hierarchy; that is,
for all A,B ∈ H(Tρ), we have A∩B ∈ {∅, A,B}. The next result is the aforementioned
analogue of Theorem 2.1. We omit the routine proof.

Theorem 2.2. Let H be a multiset of proper clusters of X whose union is X.
Then there is a rooted weak X-tree Tρ such that H = H(Tρ) if and only if H is a hier-
archy on X. Moreover, if such a rooted weak X-tree exists, then, up to isomorphism,
Tρ is unique.

Partition systems. A partition system Π ofX is compatible if ΣΠ is compatible.
Again following Theorem 2.1, if Π is a compatible partition system on X , we denote
by TΠ the weak X-tree T for which Σ(T ) = ΣΠ holds. Similarly, a partition system
Π on X is hierarchical if the set

⋃
π∈Π π of all subsets of X that appear as a part

in some partition in Π is a hierarchy. Observe that, if Π is hierarchical, then every
subset of Π is a hierarchical partition system on X . Furthermore, if π1, π2 ∈ Π and
Π is hierarchical, then, for each A ∈ π1, either A is a subset of a part in π2 or A is
the disjoint union of parts in π2.

Now, given a partition π of X , we let Σπ =
⊎

A∈π{A|(X−A)}, i.e., the multiset of
bipartitions A|(X −A) with A ∈ π. The proof of the next result follows immediately
from the respective definitions.

Lemma 2.3. Let π be a partition of X, let Σ be a split system on X, and let
Π ∈ P(Σ). Then the following hold.

(i) Σ{π}�Π = Σ 	 Σπ.
(ii) If π ∈ Π, then ΣΠ−{π} = Σ− Σπ.

3. Displaying partition systems. In this section, we describe how weak X-
trees can be used to represent partition systems. Let T = (T ;φ) be a weak X-tree,
and let π be a partition of X . A subset Eπ ⊆ E(T ) of edges of T displays π if there
is a bijection ξπ : π → Eπ such that, for each A ∈ π, the X-split corresponding to the
edge ξπ(A) is A|(X − A). For convenience, if there exists such a subset Eπ of edges
of T , then we say that T displays π. Note that such a subset Eπ need not be unique.

For a compatible partition system Π on X , the following two lemmas that we use
later describe how TΠ displays the partitions in Π. Suppose T = (T ;φ) is a weak
X-tree, and let e denote an edge of T . Then we denote by T \e the set of components
of T obtained by deleting e from T . More generally, for E a nonempty subset of edges
of T we denote by T \E the set of components of T obtained by deleting all edges in
E from T .

Lemma 3.1. Let Π be a compatible partition system on X, and let u be a vertex
of T Π = (T ;φ) such that φ−1(u) �= ∅. Let e be an edge of T Π incident with u, and let
B ∈ σe such that φ−1(u) ⊆ B. Then there exists some π ∈ Π such that B ∈ π.

Proof. Let A|B be the X-split corresponding to e, where φ−1(u) ⊆ B. Since
Σ(TΠ) = ΣΠ, it follows that there is a partition π in Π such that either A ∈ π or
B ∈ π. Suppose that A ∈ π, but B �∈ π. Then |π| ≥ 3, and there exists a part D ∈ π
such that φ−1(u) ⊆ D. Hence, A∩D = ∅ and A∪D �= X . Since π is displayed by T Π

and D ∈ π, there exists some edge e′ of T Π such that σe′ = D|X−D. But then either
e′ is an edge in the connected component Z of T Π\e that contains u or e′ is contained
in the other component Z ′ of T Π\e. In the former case it follows that A � D and so
A ∩ D �= ∅, which is impossible. Thus, e′ is an edge in Z ′. But then the connected
component of T Π\e′ that contains u must contain Z. Since φ−1(u) ⊆ B∩D, it follows
that B ⊆ D and thus X = A ∪ B ⊆ A ∪ D �= X , which is also impossible. Thus
B ∈ π.

Lemma 3.2. Let Π be a compatible partition system on X, and let π be an element
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of Π. Let Eπ be a subset of edges of T Π = (T ;φ) that displays π. Then the following
hold.

(i) Denoting by V1, V2, . . . , Vk, k ≥ 1, the vertex sets of the components of
T Π\Eπ, we have that k = |π|+ 1 and

{φ−1(V1), φ
−1(V2), . . . , φ

−1(Vk)} = π ∪ {∅}.

(ii) For every pair of labelled vertices u and v of T Π, the path joining u to v
contains exactly zero or two edges of Eπ.

Proof. We first assume that |π| = 2, that is, π = A|B for some split A|B of X .
Let Eπ be a subset of edges of T Π that displays π. Then Eπ consists of two distinct
edges e1 = {u′1, u1} and e2 = {u′2, u2} such that σe1 = A|B = σe2 . By swapping u′1
and u1, and u

′
2 and u2 if necessary, we may assume that u′1 and u′2 are not contained

in the shortest path P between u1 and u2. Moreover, since σe1 = σe2 , each vertex of
P , including u1 and u2, is unlabelled and has degree two. Hence the lemma holds for
this case.

Next assume that |π| ≥ 3. Suppose e ∈ Eπ and B ∈ σe with B ∈ π. Let vB
denote the end-vertex of e that is contained in the connected component of T Π\e
which contains some (and thus all) u ∈ V (T ) such that φ−1(u) ⊆ B. Since π is a
partition of X , there is no edge in Eπ on the path from vB to a vertex w such that
φ−1(w) ⊆ B. As π is a partition of X , part (i) of the Lemma 3.2 now follows.

For the proof of part (ii), let u and v be distinct labelled vertices of T Π. Suppose
that the path from u to v contains (in order) three edges e1, e2, and e3 of Eπ.
Since |π| ≥ 3, the splits A1|B1, A2|B2, and A3|B3 corresponding to e1, e2, and e3,
respectively, are distinct. Without loss of generality, we may assume that A1 ⊂
A2 ⊂ A3. But then B1 ∩ A2 is nonempty, and B2 ∩ A3 is nonempty. Since, for each
i ∈ {1, 2, 3}, at least one of Ai and Bi must be contained in π, it follows that π is not
a partition of X , a contradiction. Thus the path from u to v contains at most two
edges of Eπ .

Now suppose that the path from u to v contains exactly one edge e1 of Eπ . Let
A1|B1 be the split corresponding to e1. Without loss of generality, we may assume
that φ−1(u) ⊆ A1 and A1 ∈ π. Then φ−1(v) ∩A1 = ∅. Now |Eπ | ≥ 3, and no edge in
Eπ −{e1} is on the path from u to v. It follows that, for all edges e′ ∈ Eπ −{e1}, the
component of T Π\e′ that contains v also contains u. In particular, there is a part in π
that contains φ−1(u) ∪ φ−1(v), a contradiction as φ−1(u) ⊆ A1 and φ−1(v) ∩A1 = ∅.
This completes the proof of (ii) and thus the proof of the lemma.

For a tree T , the diameter of T , denoted Δ(T ), is

Δ(T ) = max{dT (u, v) : u and v are leaves of T}.

The following corollary is an immediate consequence of Lemma 3.2(ii) and gives a
lower bound on the size of a partition in P(Σ) for Σ compatible in terms of the tree
corresponding to Σ.

Corollary 3.3. Let Σ be a compatible split system on X, and let Π ∈ P(Σ).
Then

Δ(TΣ) ≤ 2|Π|.

4. A characterization of compatibility. In this section, for a given split sys-
tem Σ on X , we characterize when there exists a partition system Π on X such that
ΣΠ = Σ (i.e., when P(Σ) is nonempty). We begin by presenting some definitions.
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A 2-coloring of a graph G is a bipartition of the vertex set of G such that no two
vertices in a part are joined by an edge. An even X-tree T = (T ;φ) is a weak X-tree
with the additional property that dT (φ(x), φ(y)) is even for all x, y ∈ X . Let v be a
vertex of an even X-tree T = (T, φ). Then v is even if there is a leaf l in T such that
dT (v, l) is even; otherwise, v is odd. Note that all leaves of T are even and that we
treat the number zero as an even number. We denote by Veven(T ) the subset of even
vertices of T and by Vodd(T ) the subset of odd vertices of T .

Lemma 4.1. Let T be an even X-tree. Then
(i) all labelled vertices of T are even, and
(ii) the even and odd vertices of T induce a 2-coloring of T .
Proof. Part (i) follows immediately from the definition of an even X-tree. For

part (ii), it is easily checked that every edge is incident with exactly one even vertex
and one odd vertex, and so the even and odd vertices induce a 2-coloring of T .

Let T = (T ;φ) be a weak X-tree, and let v be an unlabelled vertex of T . Then
the partition of X displayed by v is precisely the partition π in which two elements
x, y ∈ X are in the same part of π if and only if the path from φ(x) to φ(y) does not
pass through v. We denote this partition by π(v). Note that the degree of v equals
|π(v)|. Moreover, for a graph G and a vertex v ∈ V (G), we denote by G\v the graph
obtained from G by deleting v and all its incident edges.

Theorem 4.2. Let Σ be a compatible split system on X. Then the following
statements are equivalent:

(i) T Σ is even.
(ii) There exists a partition system Π on X such that ΣΠ = Σ.
(iii) There exists a strongly compatible partition system Πs on X such that ΣΠs =

Σ.
Furthermore, if (iii) holds, then

Πs = {π(v) : v ∈ Vodd(T Σ)}

is the unique strongly compatible partition system with ΣΠs = Σ.
Proof. Evidently, (iii) implies (ii). To see that (ii) implies (i), suppose that Π

is a partition system on X such that ΣΠ = Σ. Let T Σ = (T, φ), and let x, y ∈ X .
Then dTΣ(φ(x), φ(y)) is equal to the number of splits S in ΣΠ for which x and y are
in different parts of S. By Lemma 3.2, each partition in Π contributes either zero or
two such splits. Thus dTΣ(φ(x), φ(y)) is even, and, hence, T Σ is even.

We next show that (i) implies (iii). Suppose that T Σ = (T, φ) is even, and set
Vodd = Vodd(T Σ). By Lemma 4.1(i), Vodd contains no labelled vertex of T Σ. Let

Πs = {π(v) : v ∈ Vodd}.

By Lemma 4.1(ii), every edge of T Σ is incident with exactly one vertex in Vodd, and so
it follows that ΣΠs = Σ. Furthermore, let v1 and v2 be distinct vertices in Vodd. Let V2
(resp., V1) be the vertex set of the component of T Σ\v1 (resp., T Σ\v2) that contains v2
(resp., v1). Then φ

−1(V2) ∈ π(v1) and φ−1(V1) ∈ π(v2), and φ−1(V2) ∪ φ−1(V1) = X .
Thus Πs is strongly compatible. This completes the proof that (i) implies (iii) and
thus the proof of the equivalence of (i)–(iii).

To establish the uniqueness part of the theorem, let Π be a strongly compatible
partition system on X such that ΣΠ = Σ. Let l be a leaf of T Σ, and let u be the
unique vertex of T Σ adjacent to l. Since T Σ is even, it follows by Lemma 4.1(ii) that
u is odd and so φ−1(u) = ∅. We next show that π(u) ∈ Π.
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REPRESENTING PARTITIONS ON TREES 1159

Suppose that π(u) �∈ Π. Let π(u) = {A1, A2, . . . , At}, where t ≥ 2, and, for all
i ∈ {1, . . . , t}, denote by ei the edge e of T Σ incident with u such that σe = Ai|X−Ai

holds. Without loss of generality, we may assume that A1 = φ−1(l). By Lemma 3.1,
there is a partition π1 ∈ Π such that A1 ∈ π1. Consider π1. Since A1 ∈ π1, it follows
by Lemma 3.2(ii) that each path joining l to another leaf of T Σ contains exactly two
edges of any subset Eπ1 of edges of T Σ displaying π1. As no other part of π1 contains
A1, it follows that π1 is a refinement1 of π(u). Since π(u) �∈ Π and thus π1 �= π(u),
this implies that, for some i ∈ {2, 3, . . . , t}, the part Ai is the disjoint union of at least
two parts in π1. Without loss of generality, we may assume that i = t. Since At is
the disjoint union of at least two parts in π1, there is a partition, π2 say, in Π with
π2 distinct from π1 such that a subset Eπ2 of edges of T that displays π2 contains et.
In particular, either At ∈ π2 or (X −At) ∈ π2.

We first show that At �∈ π2. Assume that At ∈ π2 holds. Then independent of
the size of π2 we must have that the degree of u cannot be two as otherwise π2 = π(u)
would follow, a contradiction. We next distinguish between |π2| ≥ 3 and |π2| = 2.
If |π2| ≥ 3, then there exists some B ∈ π2 distinct from At such that φ−1(l) ⊆ B.
Let eB denote an edge of T that displays the split B|(X − B) which must exist as
π2 ∈ Π. Note that B �= A1 as otherwise, since A1 ∈ π1, B ∈ π2, and π1 �= π2, the
multiplicity of the split B|X − B in ΣΠ is at least 2. But then the degree of u is
two, which is impossible. Consequently, eB �= e1. Moreover, since |π2| ≥ 3, it follows
that B = At or B = X − At cannot hold either and so eB �= et. Thus the path
from l to any vertex a of T Σ with φ−1(a) ⊆ At holding does not cross the edge eB.
Combining this with the fact that A1 = φ−1(l) ⊆ B, it follows that A1 ∪ At ⊆ B,
which is impossible as At and B are distinct parts of π2. Thus, |π2| ≥ 3 cannot hold.
If |π2| = 2, then π2 = {At, B} and so π1 is a refinement of π2. But then π1 and π2
cannot be strongly compatible, a contradiction. Thus, |π2| = 2 cannot hold either.
Consequently, At �∈ π2, as required.

Now assume that (X − At) ∈ π2. Since, as seen above, At �∈ π2, it follows that
At is the disjoint union of at least two parts in π2. By the choice of At as the union
of at least two parts in π1, it follows that π1 and π2 are not strongly compatible, a
contradiction. Hence π(u) ∈ Π, as required.

We complete the uniqueness part of the proof using induction on k = |Σ|. If
k = 2, then there is exactly one partition system Π such that ΣΠ = Σ, and the
uniqueness result follows. Now suppose that k ≥ 3 and the uniqueness result holds for
all compatible split systems Σ′ on X for which T Σ′ is an even X-tree and |Σ′| ≤ k−1.

Let Π be a strongly compatible partition system on X such that ΣΠ = Σ. Let l
be a leaf of T Σ, and let u be the vertex of T Σ adjacent to l. By above, π(u) ∈ Π. Let
Σ′ = Σ−Σπ(u). Then Σ′ is compatible, |Σ′| ≤ k− 1, and T Σ′ is an even X-tree as it
corresponds to the weak X-tree obtained from T Σ by contracting all edges incident
with u and labelling the resulting vertex with the union of the label sets of the vertices
previously adjacent to u. Therefore, by the induction assumption,

Π′
s = {π(v) : v ∈ Vodd(T Σ′)}

is the unique strongly compatible partition system on X for which ΣΠ′
s
= Σ′. There-

fore, as

Vodd − Vodd(T Σ′) = {u},

1A partition π′ of X is called a refinement of a partition π on X if every part of π′ is a subset
of a part of π.
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1160 K. T. HUBER, V. MOULTON, C. SEMPLE, AND T. WU

it follows that Π = Π′
s

⊎
{π(u)} = Πs. Thus the uniqueness property holds for Σ.

This completes the proof of the theorem.
Let T be a weak X-tree, and let e be an edge of T . We denote by T /e the weak

X-tree obtained from T by contracting e and labelling the new identified vertex with
the union of the labels of the end vertices of e. If F is a subset of the edges of T , then
T /F denotes the weak X-tree obtained from T by contracting each of the edges in F
in this way, where, of course, the order of contraction is of no relevance.

The next result sheds light on the structure of weak X-trees obtained from even
X-trees by contracting edges. Its proof follows from Lemma 3.2(ii) and is omitted.

Lemma 4.3. Let T be an even X-tree, and let π be a partition of X displayed by
T . Let F be a subset of edges of T that displays π. Then T /F is an even X-tree.

The following corollary may be viewed as the converse of Lemma 3.2(ii).
Corollary 4.4. Let T be an even X-tree, and let F be a nonempty subset of

edges of T with the property that, for every pair of labelled vertices u and v, the path
joining u and v contains exactly zero or two edges of F . Then there are a partition
system Π ∈ P(T ) and a partition π ∈ Π such that F displays π.

Proof. Let F = {f1, f2, . . . , ft}, t ≥ 2, and let i ∈ {1, 2, . . . , t}. Let T = (T, φ),
and consider T \fi. Since there are exactly two edges in F on the path between a leaf
in one component of T \fi and a leaf in the other component, one of the components
contains no edges in F . For each i, let Vi denote the vertex set of the component of
T \fi containing no edges in F .

We now show that

π = {φ−1(V1), φ
−1(V2), . . . , φ

−1(Vt)}

is a partition of X . If not, then there is a labelled vertex, w say, such that the
component of T \F that contains w in its vertex set is not contained in {V1, V2, . . . , Vt}.
But then, in the path from w to a leaf in any one of the components V1, V2, . . . , Vt,
there is exactly one edge in F , a contradiction. Thus π is a partition of X .

To see that there is a partition system in P(T ) containing π, observe that, by
Lemma 4.3, T /F is an even X-tree, and so, by Theorem 4.2, there is a partition
system Π′ on X such that ΣΠ′ = Σ(T /F ), that is, Π′ ∈ P(T /F ). By Lemma 2.3(i),
it now follows that Π′ ⊎{π} is a partition system in P(T ).

5. Maximum-sized partition systems. In this section, for a compatible split
system Σ on X , we show that the unique strongly compatible partition system in
P(Σ) is a partition system in P(Σ) of maximum size.

We begin by proving a lemma for which we require some additional notation. Let
T be a tree with at least two leaves. We denote by Vint(T ) the set of interior vertices
of T . Suppose “odd” and “even” are the colors of a 2-coloring of T . Extending our
notation for evenX-trees, we denote the sets of vertices of T colored “odd” and “even”
by Vodd(T ) and Veven(T ), respectively. Furthermore, we denote the sets of interior
vertices of T colored “odd” and “even” by (Vint)odd(T ) and (Vint)even(T ), respectively.

Lemma 5.1. Let T be a tree with at least two leaves, and suppose that we have a
2-coloring of the vertex set of T using the set {odd, even}. Then

|Vodd(T )| ≥ |(Vint)even(T )|+ 1.

Proof. The proof is by induction on the size m of the vertex set of T . If m = 2,
then a routine check shows that the lemma holds. Now suppose that m ≥ 3 and the
result holds for all trees with fewer than m vertices. Let v be a leaf of T , and let T ′
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be the tree obtained from T by deleting v and the edge incident with it. For ease
of presentation, set Vodd = Vodd(T ), V

′
odd = V ′

odd(T ), (Vint)even = (Vint)even(T ), and
(V ′

int)even = (Vint)even(T
′). Since |V (T ′)| < m and the given 2-coloring of T induces a

2-coloring of T ′, it follows by the induction assumption that

|V ′
odd| ≥ |(V ′

int)even|+ 1.(5.1)

Let t and t′ denote the size of the leaf sets of T and T ′, respectively, and let u
denote the unique vertex adjacent to v in T . We divide the rest of the proof into two
cases depending upon whether t′ = t − 1, in which case the degree of u in T is at
least three, or t′ = t, in which case the degree of u in T is two. If t′ = t − 1, then
Vint(T ) = Vint(T

′). Therefore, by (5.1),

|Vodd| ≥ |V ′
odd| ≥ |(V ′

int)even|+ 1 = |(Vint)even|+ 1,

and the lemma holds.
Now suppose that t′ = t. If v is colored even, then (Vint)even = (V ′

int)even and so,
by (5.1),

|Vodd| ≥ |V ′
odd| ≥ |(V ′

int)even|+ 1 = |(Vint)even|+ 1.

So we may assume that v is colored odd. Then |(Vint)even| = |(V ′
int)even| + 1 and

|Vodd| = |V ′
odd|+ 1. Combining these two equations with (5.1), it follows that

|Vodd| = |V ′
odd|+ 1 ≥ |(V ′

int)even|+ 2 = |(Vint)even|+ 1.

This completes the proof of the lemma.
Denoting for a vertex v of a graph the degree of v by deg(v), we are now ready

to give the aforementioned characterization.
Theorem 5.2. Let Π be a compatible partition system on X, and let Πs be

the unique strongly compatible partition system in P(ΣΠ). Then |Π′| ≤ |Πs| for all
Π′ ∈ P(ΣΠ).

Proof. Let Π′ ∈ P(ΣΠ) and π1 ∈ Π′. Let Π′
1 denote Π′ − {π1}. Since T Π

∼= T Π′

and, by Lemma 2.3(ii), ΣΠ′ = ΣΠ−{π1} = ΣΠ − Σπ1 holds, it follows that T Π′
1

∼=
T Π/Eπ1 , where Eπ1 is a subset of edges of T Π that displays π1. Since, by Theorem 4.2,
T Π is even, Lemma 4.3 implies that T Π′

1
is even. Set Vodd = Vodd(T Π) and (V ′

1 )odd =
Vodd(T Π′

1
). We next show that

|Vodd| ≥ |(V ′
1 )odd|+ 1(5.2)

holds, which will be crucial for an inductive argument on the edge set of T Π which
will allow us to establish the theorem.

To observe (5.2), let V1, V2, . . . , Vt denote the vertex sets of the components of
T Π\Eπ1 . By Lemma 3.2(i), precisely one of these vertex sets has the property that
no vertex is labelled. Without loss of generality, we may assume that this vertex set
is Vt. We consider two cases depending on the size of Vt. Suppose first that |Vt| = 1,
and let Vt = {u}. If u is odd, then each of the deg(u) vertices adjacent to u is even,
and it follows that (V ′

1)odd has exactly one less vertex than Vodd. In particular, (5.2)
holds. If u is even, then each of the deg(u) vertices adjacent to u is odd. Therefore

|Vodd| = |(V ′
1 )odd|+ deg(u)− 1.
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But deg(u)− 1 ≥ 1 as deg(u) ≥ 2, and so (5.2) holds.
Now suppose that |Vt| ≥ 2. Let T t be the subtree of T Π induced by Vt, and let T +

t

be the subtree of T Π whose edge set is precisely E(T t)∪Eπ1 . Let (Vt)even = Veven(T t)
and (V +

t )odd = Vodd(T +
t ). Then

|(V ′
1)odd| = |(Vt)even|+

(
|Vodd| − |(V +

t )odd|
)
,

and therefore

|Vodd| − |(V ′
1 )odd| = |(V +

t )odd| − |(Vt)even|.

Since (Vint)even(T +
t ) = (Vt)even, we have |(V +

t )odd| − |(Vt)even| ≥ 1 by Lemma 5.1,
and so (5.2) follows.

Having established (5.2), we complete the proof of the theorem by induction on
the size of the edge set EΠ of TΠ. If |EΠ| = 2, then Π is the unique partition system in
P(ΣΠ). In particular, Π is the unique strongly compatible partition system in P(ΣΠ),
and so the theorem holds. Now assume that the theorem holds for all compatible
partition systems whose corresponding even X-tree has fewer edges than TΠ. Let Π′,
π1, and Π′

1 be as defined at the beginning of the proof. Then, as observed there, T Π′
1

must be even. By Theorem 4.2, P(ΣΠ′
1
) must contain a unique strongly compatible

partition system (Π′
1)s on X . But then |Π′

1| ≤ |(Π′
1)s|, by the induction assumption.

Combining this with (5.2) and Theorem 4.2, which implies that |Vodd| = |Πs| and
|(V ′

1 )odd| = |(Π′
1)s| hold, we obtain

|Π′| = |Π′
1|+ 1 ≤ |(Π′

1)s|+ 1 = |(V ′
1 )odd|+ 1 ≤ |Vodd| = |Πs|.

This completes the proof of the theorem.
As we have seen in the example presented in the introduction, for a compatible

split system Σ with P(Σ) �= ∅, the strongly compatible partition system in P(Σ) is
not necessarily the only partition system in P(Σ) of maximum size. For such Σ, it
could therefore be of interest to try to characterize the set of partition systems in
P(Σ) of maximum size. In regard to this, it is worth noting that, in the case when Σ
is a compatible set of splits corresponding to a phylogenetic X-tree with all interior
vertices of degree three, it is not difficult to show that there is a unique partition
system in P(Σ) of maximum size, namely the strongly compatible partition system.

6. Constructing minimum-sized partition systems. We now turn our at-
tention to the problem of understanding minimum elements in the set P(Σ) for a
compatible split system Σ. More specifically, we construct, for an even X-tree T , a
P(T )-minimum partition system on X , that is, a partition system Π on X such that
Σ(T ) = ΣΠ and Π is of minimum size with respect to this property. The construction
is presented in the form of the MinSizePartition algorithm in Figure 2. It will make
use of the following decomposition of a weak X-tree.

Let T = (T ;φ) be a weak X-tree with edge set E, and let v be a labelled interior
vertex of T . Suppose that v has degree k ≥ 2. Now partition E so that, for all
edges e and f , we have e and f in the same part if and only if the path from e to
f in T avoids v. Let {E1, E2, . . . , Ek} denote the resulting partition on E. For each
i ∈ [k] = {1, . . . , k}, k ≥ 2, let ei denote the unique edge in Ei incident with v in T ,
and let Ai|Bi denote the X-split corresponding to ei, where φ

−1(v) ⊆ Bi. For each
i ∈ [k], let Ti denote the weak X-tree induced by Ei, where the label of every vertex of
T is retained except for v, whose label changes to Bi. The collection {T1, T2, . . . , Tk}
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MinSizePartition(T )

Input: An even X-tree T .
Output: A partition system Πmin(T ) on X that is P(T )-minimum.

If there exists an interior vertex v in T that is labelled
Construct the decomposition D(T , v), say {T1, T2, . . . , Tk}, of T
For each i ∈ [k], call MinSizePartition(Ti)
Return Πmin(T )← Πmin(T1)

⊎
Πmin(T2)

⊎
· · ·

⊎
Πmin(Tk)

Else, set πmin = πmin(T ) and set Σ′ = Σ(T )− Σπmin

If Σ′ is nonempty
Construct the even X-tree T ′ for which Σ(T ′) = Σ′

Call MinSizePartition(T ′)
Return Πmin(T )← {πmin}

⊎
Πmin(T ′)

Else
Return Πmin(T )← {πmin}

Endif
Endif

Fig. 2. Pseudocode for MinSizePartition.

is called the decomposition of T with respect to v and is denoted by D(T , v). To
illustrate the decomposition, consider the even X-tree T shown in Figure 3, where
X = {1, 2, 3, 4, 5, 6, 7}. The decomposition of T with respect to the vertex labelled 3
is shown in the right-hand side of the figure.

T
4

5

67

1

2

3

1

2

67

4

5

1, 2, 3, 4, 5

1, 2, 3, 6, 7

3, 4, 5, 6, 7

T2

T1 T3

Fig. 3. A weak X-tree T with X = {1, 2, . . . , 7} (left) and the decomposition {T1,T2,T3} of T
with respect to the vertex labelled 3 (right). Filled vertices denote labelled vertices.

Two observations that we freely use in the rest of this section are the following.
First,

Σ(T ) = Σ(T1) 	 Σ(T2) 	 · · · 	 Σ(Tk),

and, for all distinct i, j ∈ [k], we have Σ(Ti) ∩ Σ(Tj) = ∅. Second, if T is an even
X-tree, then each of the weak X-trees T1, T2, . . . , Tk is even.

The next lemma will be used later in this section.
Lemma 6.1. Let T be a weak X-tree, and let v be a labelled interior vertex of T .

Let D(T , v) = {T1, T2, . . . , Tk}, and let Π be a partition system on X. Then Π ∈ P(T )
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if and only if there is a partition {Π1,Π2, . . . ,Πk} of Π such that, for all i ∈ [k], we
have Πi ∈ P(Ti). Moreover, if Π ∈ P(T ), then such a partition of Π is unique.

Proof. Suppose first that there is a partition {Π1,Π2, . . . ,Πk} of Π such that, for
all i ∈ [k], we have Πi ∈ P(Ti). Then, as

Σ(T ) = Σ(T1) 	Σ(T2) 	 · · · 	 Σ(Tk)

and ΣΠi = Σ(T i) holds for all i ∈ [k], Lemma 2.3 implies

Π = Π1 	 Π2 	 · · · 	 Πk ∈ P(T ).

Conversely, suppose that Π ∈ P(T ). For each i ∈ [k], let Ei denote the edge
set of Ti. Let π ∈ Π, and let Eπ be a subset of edges of T that displays π. If Eπ

contains distinct edges e and f , then with x ∈ e and y ∈ f such that x and y lie on
the path from a ∈ e − {x} to b ∈ f − {y}, it is easily seen that the path from x to y
avoids the labelled vertex v. In particular, Eπ ⊆ Ei for some i ∈ [k]. Furthermore,
as Σ(Ti) ∩ Σ(Tj) = ∅ for all distinct i, j ∈ [k], there is a unique i∗ ∈ [k] for which
Eπ ⊆ Ei∗ . Now let {Π1,Π2, . . . ,Πk} denote the unique partition of Π such that, for
all i ∈ [k], we have ΣΠi ⊆ Σ(Ti). But ΣΠ = Σ(T ), and so, for all i ∈ [k], we have
ΣΠi = Σ(Ti), that is, Πi ∈ P(Ti). This completes the proof of the lemma.

For an even X-tree T , we next present our construction MinSizePartition in
the form of pseudocode and establish its correctness in Theorem 6.3. For example,
for the even X-tree T depicted in Figure 1, the P(T )-minimum partition system that
we construct is the partition system Π6 given in the introduction.

For a weak X-tree T = (T ;φ) in which all interior vertices are unlabelled, set
πmin(T ) to be the partition

πmin(T ) = {φ−1(v) : v is a leaf of T }

ofX . Note that Σπmin(T ) ⊆ Σ(T ) and that, for the evenX-tree T depicted in Figure 1,
we have πmin(T ) = {1|2|3|4|5|6}.

To establish the correctness of MinSizePartition, we make use of the next
lemma.

Lemma 6.2. Let T be an even X-tree with no labelled interior vertices. Then
there exists a P(T )-minimum partition system that contains πmin(T ).

Proof. For convenience, set πmin = πmin(T ). If A ∈ πmin, then, by Lemma 3.1,
each partition system in P(T ) contains a partition π with A ∈ π. Suppose that Π
is a P(T )-minimum partition system. We may assume that πmin �∈ Π. Let Π′ be a
minimum-sized subset of Π such that, for each A ∈ πmin, there is a partition π′ in Π′

with A ∈ π′. Note that ΣΠ′ = Σ(T ) need not hold. Without loss of generality, we may
assume that Π′ is a minimum-sized partition system contained in a P(T )-minimum
partition system with this property. We break the proof into two cases depending on
whether or not Π′ is a strongly compatible partition system on X .

First suppose that Π′ is strongly compatible. Then ΣΠ′ is compatible, and so
Theorem 4.2 implies that T ΣΠ′ is even. Let F denote the subset of edges of T ΣΠ′
that are incident with some leaf of T ΣΠ′ . Then, for any two leaves u and v of T ΣΠ′ ,
the path between u and v contains either zero or precisely two edges in F . Hence, by
Corollary 4.4, there exists a partition system Π′′ in P(ΣΠ′) and a partition π ∈ Π′′ that
displays F . But now the definition of πmin implies that π = πmin, and so πmin ∈ Π′′.
Consider the partition system

Π̂ = (Π−Π′) 	 Π′′.
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Since ΣΠ′ = ΣΠ′′ , it follows that Π̂ is in P(T ). As Π′ is strongly compatible, it
follows by Theorem 5.2 that |Π′′| ≤ |Π′|. Since Π′ ⊆ Π and Π is a P(T )-minimum
partition system, it follows that |Π| = |Π̂| and so Π̂ is also a P(T )-minimum partition
system. Observing that πmin ∈ Π̂ completes the proof of the case when Π′ is strongly
compatible.

Now suppose that Π′ is not strongly compatible. Then there exist distinct parti-
tions π and π′ in Π′ that are not strongly compatible. This implies that π ∪ π′ is a
hierarchy. To see this, suppose that π ∪ π′ is not a hierarchy. Then there exist A ∈ π
and A′ ∈ π′ such that each of the sets A∩A′, A∩ (X−A′), (X−A)∩A′ is nonempty.
Furthermore, (X −A)∩ (X −A′) is also nonempty as A∪A′ �= X . But π, π′ ∈ Π and
Π is compatible, so at least one of these intersections is empty, a contradiction.

Since π ∪ π′ is a hierarchy, it follows that, for each A ∈ π, either A is a subset of
a part in π′ or A is the disjoint union of parts in π′. Similarly, for each A′ ∈ π′, either
A′ is a subset of a part in π or A′ is the disjoint union of parts in π. It now follows
that there is a partition system {π1, π2} on X such that Σ{π1,π2} = Σ{π,π′}, and, for
all B ∈ π1, we have that B is a subset of a part in π2. Let

Π′′ = (Π′ − {π, π′}) 	 {π1}.

Clearly, |Π′′| = |Π′|−1. Furthermore, for each A ∈ πmin, there exists, by assump-
tion, a partition in Π′ containing A, and so, for each A ∈ πmin, there is a partition in
Π′′ containing A. Now consider the partition system

Π̂ = (Π−Π′) 	 Π′′ 	 {π2} = (Π− {π, π′}) 	 {π1, π2}.

Since ΣΠ = ΣΠ̂, it follows that Π̂ is in P(T ). Therefore, as Π is P(T )-minimum, Π̂

is P(T )-minimum. But |Π′′| < |Π′| and Π′′ is a subset of Π̂ with the property that,
for each A ∈ πmin, there is a partition in Π′′ containing A, a contradiction. This
completes the proof of the case that Π′ is not strongly compatible.

Theorem 6.3. Let T be an even X-tree. Then the partition system Πmin(T )
returned by MinSizePartition applied to T is a P(T )-minimum partition system.

Proof. We prove the theorem by induction on the number m of interior vertices
of T . Since T is even, m ≥ 1. If m = 1, then the unique interior vertex is adjacent to
each leaf of T . It now follows by Lemma 3.1 combined with the definition of πmin(T )
that {πmin(T )} is the unique partition system in P(T ), and so MinSizePartition

correctly returns {πmin(T )}.
Let m ≥ 2, and assume that MinSizePartition correctly returns a P(T ′)-

minimum partition system whenever it is applied to an even X-tree T ′ with fewer
than m interior vertices. We distinguish two cases depending on whether or not T
has a labelled interior vertex.

First suppose that T has a labelled interior vertex v. Without loss of generality,
we may assume that, at the first iteration of MinSizePartition applied to T , the
algorithm constructs the decomposition

D(T , v) = {T1, T2, . . . , Tk}

of T with respect to v, where k is the degree of v. Thus, to complete the proof of this
case, it suffices to show that

Π̂ = Πmin(T1) 	 Πmin(T2) 	 · · · 	 Πmin(Tk)
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is P(T )-minimum, where, for all i ∈ [k], Πmin(Ti) is the partition system onX returned
by MinSizePartition applied to the even X-tree Ti.

Let i ∈ [k]. Then, as Ti has fewer interior vertices than T , it follows by the
induction assumption that Πmin(Ti) is P(Ti)-minimum. One consequence of this fact
is that Πmin(Ti) is a partition system in P(Ti). Combined with the definition of Π,
Lemma 6.1 implies that Π̂ is a partition system in P(T ). Now if Π̂ is not P(T )-
minimum, then there exists a partition system Π ∈ P(T ) such that |Π| < |Π̂|. By
Lemma 6.1, there is a partition {Π1,Π2, . . . ,Πk} of Π such that, for all i ∈ [k], we have
Πi ∈ P(Ti). But |Π| < |Π̂|, and so there exists some j ∈ [k] such that |Πj | < |Πmin(Ti)|
for some i ∈ [k], a contradiction. Thus Π̂ is P(T )-minimum, as required.

Now suppose that T has no labelled interior vertex, and set πmin = πmin(T ) and
Σ′ = Σ(T )−Σπmin . Then if Σ′ �= ∅, the algorithm constructs the weak X-tree T ′ for
which Σ(T ′) = Σ′. Note that T ′ ∼= T /E, where E is a set of edges of T that displays
πmin, and so, since T is an even X-tree, it follows by Lemma 4.3 that T ′ is in fact an
even X-tree. For this case, it now suffices to show that

Π̂ = {πmin} 	 Πmin(T ′)

is P(T )-minimum, where Πmin(T ′) is the partition system on X returned by Min-

SizePartition applied to T ′.
Since T ′ has fewer interior vertices than T , it follows by the induction assump-

tion that Πmin(T ′) is P(T ′)-minimum. This immediately implies that Πmin(T ′) is a
partition system in P(T ′), and so Π̂ ∈ P(T ). Now, by Lemma 6.2, there is a P(T )-
minimum partition system Π containing πmin. Let Π

′ = Π− {πmin}. By Lemma 2.3,
Π′ ∈ P(T ′), and so |Πmin(T ′)| ≤ |Π′|. Hence

|Π̂| = |Πmin(T ′)|+ 1 ≤ |Π′|+ 1 = |Π|.

Thus, as Π is P(T )-minimum, we deduce that |Π| = |Π̂| and so Π̂ must also be
P(T )-minimum, as required. This completes the proof of the second case and the
theorem.

7. Hierarchical partition systems. In the previous section we showed how
to construct, for an even X-tree T , a P(T )-minimum partition system Π on X . It
appears to be a difficult problem to characterize the set of P(T )-minimum partition
systems for arbitrary T . However, in this section we shall show that in the case when
T contains a vertex ρ that is the same distance from every leaf in T , then we can
characterize the P(T )-minimum partition systems (Theorem 7.4). Note that such
trees are sometimes called equidistant trees [17, p. 150].

The first result in this section shows that hierarchical partition systems are com-
patible.

Proposition 7.1. Let Π be a hierarchical partition system on X. Then Π is
compatible. Moreover, TΠ is isomorphic to T −

ρ , where Tρ is the rooted weak X-tree
with H(Tρ) =

⊎
π∈Π π.

Proof. By Theorem 2.2, there is a unique rooted weak X-tree, Tρ say, with
H(Tρ) =

⊎
π∈Π π. This implies that Σ(T −

ρ ) = ΣΠ. In particular, Π is compatible and
TΠ is isomorphic to T −

ρ .
The next result gives some properties of TΠ in the case when Π is a hierarchical

partition system.
Corollary 7.2. Let Π be a hierarchical partition system on X.
(i) If u is an interior vertex of TΠ, then u is unlabelled.
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(ii) There is a vertex ρ of TΠ such that, for all leaves u and v,

dTΠ(ρ, u) = dTΠ(ρ, v) = |Π|.

Proof. To prove (i), let TΠ = (TΠ;φ), and suppose that there is a labelled interior
vertex u of TΠ. Let A = φ−1(u). By Lemma 3.1, for each edge incident with u, there
is a distinct partition in Π with a part that properly contains A. Since u is an interior
vertex, it has degree at least two, so there are at least two such partitions, π1 and π2
say. Let A1 and A2 be the parts of π1 and π2, respectively, that properly contain A.
It is easily seen that neither A1 ⊆ A2 nor A2 ⊆ A1. But then, as A ⊆ A1 ∩ A2 and
A is nonempty, it follows that Π is not hierarchical, a contradiction. This completes
the proof of (i).

For the proof of (ii), let Tρ = (Tρ;φ) be the rooted weak X-tree with root ρ for
whichH(Tρ) =

⊎
π∈Π π. Let u be a leaf of Tρ. Now, the clusters displayed by the edges

on the path from ρ to u are precisely the sets in
⊎

π∈Π π containing φ−1(u). Since each
partition in Π contains exactly one such set as a part, it follows that dTρ(ρ, u) = |Π|.
By Proposition 7.1, this in turn implies that

dTΠ(ρ, u) = dTΠ(ρ, v)

for all leaves u and v of TΠ, thereby completing the proof of (ii).
We now characterize the compatible split systems Σ for which there exists some

hierarchical partition system Π with ΣΠ = Σ.
Theorem 7.3. Let Σ be a compatible split system on X. Then there exists a

hierarchical partition system Π ∈ P(Σ) if and only if TΣ has a vertex ρ such that, for
all labelled vertices u and v of T Σ,

(7.1) dTΣ(ρ, u) = dTΣ(ρ, v).

Proof. If there exists a hierarchical partition system Π ∈ P(Σ), then it follows by
Corollary 7.2 that TΣ has a vertex ρ such that, for all labelled vertices u and v of TΣ,
we have

dTΣ(ρ, u) = dTΣ(ρ, v).

To prove the converse, suppose that TΣ has such a vertex ρ. Then no interior
vertex of TΣ is labelled. Let d denote the distance from ρ to a leaf of TΣ. For each
i ∈ {1, . . . , d}, let Ei denote the subset of edges whose end-vertex farthest from ρ is
at distance i to ρ. Note that {E1, E2, . . . , Ed} is a partition of E(TΣ). Viewing TΣ as
a rooted weak X-tree with root ρ, let

πi = {Ce : e ∈ Ei}

for each i. Since the leaves of TΣ all have the same distance to ρ, it follows that πi is
a partition of X for all i. In particular,

Πh =
⊎

i∈{1,...,d}
πi

is a partition system on X with ΣΠh
= Σ. To see that Πh is hierarchical, let Ai ∈ πi

and Aj ∈ πj , where πi, πj ∈ Πh. If i = j, then either Ai ∩ Aj = ∅ or Ai = Aj . Thus
we may assume that i �= j. Without loss of generality, we may further assume that
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i < j. But then, again viewing TΣ as a rooted weak X-tree with root ρ, it is easily
seen that either Ai ∩ Aj = ∅ or Ai ∩ Aj = Aj as Ai = Cei and Aj = Cej for some
ei ∈ Ei and some ej ∈ Ej , and H(TΣ) =

⊎
π∈Πh

π. Consequently, Πh is hierarchical.
This completes the proof of the converse and thereby the proof of the theorem.

We conclude this section by characterizing, for a compatible split system Σ for
which P(Σ) contains a hierarchical partition system, the P(TΣ)-minimum partition
systems.

Theorem 7.4. Let Σ be a compatible split system on X such that P(Σ) contains
a hierarchical partition system, and let Π ∈ P(Σ). Then Π is hierarchical if and only
if Π is P(TΣ)-minimum.

Proof. Note that, since P(Σ) contains a hierarchical partition system, it follows
by Theorem 7.3 that TΣ has a vertex ρ such that, for all leaves u and v in TΣ,

dTΣ(ρ, u) = dTΣ(ρ, v).

First suppose that Π is hierarchical. Then, since Π ∈ P(Σ) and thus T Σ
∼= T Π,

Corollary 7.2(ii) implies

Δ(TΣ) = 2dTΣ(ρ, u) = 2|Π|,

where u is a leaf of TΣ. But, by Corollary 3.3,

Δ(TΣ) ≤ 2|Π′|

for all partition systems Π′ ∈ P(Σ). Thus |Π| ≤ |Π′| for all partition systems Π′ ∈
P(Σ), and so Π is P(TΣ)-minimum.

We prove the converse by establishing that if Π is not hierarchical, then Π is
not P(TΣ)-minimum. Suppose that Π is not hierarchical. Then there exist distinct
π1, π2 ∈ Π with A1 ∈ π1 and A2 ∈ π2 such that A1 ∩ A2 �∈ {∅, A1, A2}. Let T ρ

Σ

denote the rooted weak X-tree obtained by viewing TΣ rooted at ρ. Since A1 ∩A2 �∈
{∅, A1, A2}, either A1 or A2 is not a cluster of T ρ

Σ . Without loss of generality, we
may assume that A2 is not a cluster of T ρ

Σ . Let Eπ2 denote a subset of edges of TΣ
that displays π2, and let e denote the edge in Eπ2 displaying A2|(X − A2). Observe
that, as A2 is not a cluster of T ρ

Σ , it is easily seen that, for each edge e′ ∈ Eπ2 − {e},
the unique path in TΣ from ρ to the vertex of e′ closer to ρ traverses e. Now, by
Theorem 4.2, TΣ is an even X-tree, and so, by Lemma 4.3, TΣ/Eπ2 is an even X-tree.
We show next that

Δ(TΣ) = Δ(TΣ/Eπ2).(7.2)

If the degree of ρ is at least three, then, by the previous observation on the unique
path in T Σ starting at ρ, there must exist leaves x and y in T Σ such that the path
from ρ to either of them does not traverse an edge in Eπ2 . Thus,

Δ(T Σ) ≥ Δ(TΣ/Eπ2) ≥ dTΣ/Eπ2
(x, y) = dTΣ(x, y) = Δ(T Σ),

by Theorem 7.3. Consequently, (7.2) must hold in this case.
Now assume that the degree of ρ equals two. Since, by assumption, P(Σ) contains

as hierarchical partition system Πh and T Σ
∼= T Πh

, it follows by Corollary 7.2 that
T Σ does not contain an interior vertex that is labelled. Since A2 is not a cluster of
T ρ

Σ, it follows that T
ρ
Σ must contain a vertex of degree at least three on the path from

ρ to the closer one of the two vertices of e. By the observation above on the unique
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path in T Σ starting at ρ, the same arguments as in the case that ρ is of degree at
least three imply that (7.2) must hold in this case too.

To complete the proof of the converse, let Πh denote again a hierarchical partition
system in P(Σ). Then, combining Corollary 7.2, (7.2), and Corollary 3.3,

2|Πh| = Δ(TΣ) = Δ(TΣ/Eπ2) ≤ 2(|Π| − 1) < 2|Π|.

In particular, |Πh| < |Π|, so Π is not P(TΣ)-minimum. This completes the proof of
the converse and the theorem.

8. A decision problem. It could be of interest to try to extend the main
results in this paper to other types of multisets of splits (e.g., weakly compatible or
k-compatible sets [10]). For example, by Theorem 4.2, if we are given a compatible
multiset Σ of splits of a set X , it is easy to decide whether or not there exists some
partition system Π on X with ΣΠ = Σ, but what if Σ is not compatible? We now
prove a result that indicates that extending our results could be quite challenging. In
particular, we show that the following decision problem is NP-complete.
Partition System

Instance: A split system Σ on X .
Question: Is there a partition system Π on X such that ΣΠ = Σ?

To prove this result we first recall some useful facts. Suppose that G is a graph.
Then G is called simple if it does not contain a loop and cubic if every vertex has
degree three. A matching M of G is a subset of edges of G such that no two edges in
M share a vertex. A matching M of G is called perfect if every vertex of G is incident
with some edge in M . A k-edge coloring of G is an assignment of at most k ≥ 2
colors to the edges of G so that no two edges incident with the same vertex have the
same color. The edge chromatic number of G is the smallest k for which G is k-edge
colorable. A consequence of a theorem due to Vizing [19] is that the edge chromatic
number of a simple cubic graph G is either 3 or 4, where it is 3 if and only if the
edges of G can be partitioned into three perfect matchings. To show that Partition
System is NP-complete, we use the following NP-complete problem [12].
Cubic Edge Coloring

Instance: A simple cubic graph G.
Question: Is the edge chromatic number of G 3?

Theorem 8.1. The decision problem Partition System is NP-complete even
if the split system Σ is a set of splits.

Proof. Clearly, Partition System is in NP. Now, let G be an instance of Cubic

Edge Coloring with vertex and edge sets V and E, respectively. We may assume
that |V | ≥ 5. We construct an instance of Partition System as follows. Let X = V ,
and let

Σ =
⊎

{u,v}∈E

{{u, v}|(X − {u, v})}.

Note that the time taken for this construction and the size of the constructed instance
are polynomial in the size of G. Moreover, since G is simple, the multiplicity of each
split in Σ is 1; that is, Σ is a set. We next show that there exists a partition system
Π on X with ΣΠ = Σ if and only if E can be partitioned into three perfect matchings
of G.

First suppose that G has three pairwise-disjoint perfect matchings M1, M2, and
M3. SinceMi is a partition of X for all i and since each edge {u, v} of G is in precisely
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one of M1, M2, and M3, it follows that the partition system Π′ = {M1,M2,M3} on
X has the property that ΣΠ′ = Σ.

Now suppose that there is a partition system Π on X such that ΣΠ = Σ. Let
π ∈ Π, and let A ∈ π. Since A|(X − A) ∈ Σ, either A or X − A is an edge of G. If
X − A is an edge of G, then, as |X | ≥ 5, we have π = {A,X − A}. But then the
multiplicity of A|(X − A) in ΣΠ is at least 2, which is a contradiction as Σ is a set
and not a multiset. Therefore A is an edge of G. As each vertex is incident with
exactly three edges, it now follows that Π consists of three partitions of X with each
partition being a perfect matching of G. Since these matchings are pairwise disjoint,
E can be partitioned into three perfect matchings. This completes the proof of the
theorem.

9. Discussion. In this section, we shall consider the mapping that takes a par-
tition system Π to the split system ΣΠ in a more general setting. The study of similar
mappings between combinatorial objects relevant to phylogenetic analysis, such as
split systems and distances, has proved to be a fruitful approach to various problems
in the area of phylogenetic combinatorics (cf., e.g., [7]).

We begin with some additional terminology and notation. Given a finite set X ,
let Π(X) and Σ(X) be the set of partitions and splits of X , respectively. In addition,
for a subset A of X , let Π(X ;A) be the set of partitions π in Π(X) with A ∈ π. A
real partition family on X is a map μ from Π(X) into R≥0, and a real split family on
X is a map ν from Σ(X) into R≥0. Moreover, μ is called an integral partition family
if μ(π) is a nonnegative integer for every π ∈ Π(X), and integral split families are
defined in a similar manner. Note that each partition system Π on X gives rise to
a real partition family μΠ on X in which μΠ maps each partition π in Π(X) to the
multiplicity of π in Π if π ∈ Π, and 0 otherwise.

Now consider the map κ : R
Π(X)
≥0 −→ R

Σ(X)
≥0 that takes a real partition family μ

on X to the real split family κ(μ) on X defined by

κ(μ)(A|B) =
∑

π∈Π(X;A)

μ(π) +
∑

π∈Π(X;B)

μ(π)

for each split A|B in Σ(X). Then, for a given partition system Π on X and each split
A|B in Σ(X), the value κ(μΠ)(A|B) is equal to the multiplicity of A|B in the split
system ΣΠ if A|B ∈ ΣΠ, and 0 otherwise. Therefore, the map κ can be regarded as
a generalization of the mapping that takes a partition system Π on X to the split
system ΣΠ.

In this framework, the results of the previous sections are mainly concerned with
understanding the kernel of the map κ, that is, the set κ−1(ν) for a real split family
ν on X . In this context, we are especially interested in the case when ν is an inte-
gral split family and the support of ν, defined as the set {S ∈ Σ(X) : ν(S) > 0},
is compatible. In particular, Theorem 4.2 presents a criterion for deciding whether
or not the kernel κ−1(ν) contains an integral partition family. Moreover, if such an
integral partition family exists, then Theorem 5.2 provides a canonical construction
for a maximum-sized integral partition family in that kernel, and algorithm Min-

SizePartition obtains an integral partition family in the kernel with the minimum
size (see also Theorem 6.3). Finally, as shown in Theorem 8.1, if the support of ν
is not compatible, then it is NP-complete to determine whether the kernel κ−1(ν)
contains an integral partition family.

In light of these facts, it would be interesting to characterize the set of real split
families ν for which the kernel κ−1(ν) contains an integral partition family. Note that,
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Fig. 4. The 1-skeleton of the polytope κ−1(ν0) for the integral partition family ν0 given in
section 9.

given a real split family ν, the kernel κ−1(ν) may not contain an integral partition
family, even if ν itself is integral. For example, consider the set X = {1, 2, 3, 4}, the
splits Si = {{i}, X − {i}} for 1 ≤ i ≤ 4 and S5 = {{1, 2}, {3, 4}}, and let ν0 be the
integral split family on X defined by setting ν0(Si) = 1 for 1 ≤ i ≤ 5. Then it is
straightforward to check that κ−1(ν0) does not contain an integral partition family.
However, it is not difficult to see that κ−1(ν0) is not empty and that it is in fact
a three-dimensional polytope with five vertices (see Figure 4 for the 1-skeleton of
κ−1(ν0) and [20] for definitions related to polytopes).

More generally, it can be shown that the kernel κ−1(ν) is always a polytope for
each real split family ν on X . The proof of this fact is beyond the scope of this paper
and will be presented elsewhere. Note that the polytope κ−1(ν) can be much more
complicated in general and there are several interesting questions that can be asked
concerning its structure. For example, it could be of interest to find formulas for its
dimension and the number of its faces and vertices, or to find interesting characteri-
zations for its faces and vertices. A better understanding of these questions should,
we hope, shed further light on mappings from partition systems to split systems and,
ultimately, their application to phylogenetics.
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