309 research outputs found

    BATCH REVERSE OSMOSIS: EXPERIMENTAL RESULTS, MODEL VALIDATION, AND DESIGN IMPLICATIONS

    Get PDF
    In theory, batch reverse osmosis (RO) systems can achieve the lowest practical energy consumption by varying feed pressure over time. However, few batch RO syste ms have been built and operated. We have tested a bench-scale prototype of a true batch RO system using a bladder and a 2.5” (6.35 cm) spiral wound membrane element. Some practical issues in implementing batch RO include system start-up time, system depressurization, osmotic backwash during the reset phases, and lower permeate quality. This study is the first to validate batch models by measuring the hydraulic work of both the high pressure pump and the circulation pump. The experimental measurements agree well with the model (error ≤ 3 %) after accounting for concentration polarization. We used the validated model to calculate the energy savings of true batch systems at higher salinities and recovery ratios. We find that the energy savings achievable by true batch systems are less than previously thought, but still significant at relatively high recoveries. At 50% recovery of seawater feed, a batch RO plant could save 15% of the energy consumed by a continuous RO plant while still maintaining the same effective flux. Further studies should identify the additional costs associated with batch RO in order to identify the operating conditions where batch RO will be an economically favorable option compared to conventional continuous RO

    Bergmann Glia and the Recognition Molecule CHL1 Organize GABAergic Axons and Direct Innervation of Purkinje Cell Dendrites

    Get PDF
    The geometric and subcellular organization of axon arbors distributes and regulates electrical signaling in neurons and networks, but the underlying mechanisms have remained elusive. In rodent cerebellar cortex, stellate interneurons elaborate characteristic axon arbors that selectively innervate Purkinje cell dendrites and likely regulate dendritic integration. We used GFP BAC transgenic reporter mice to examine the cellular processes and molecular mechanisms underlying the development of stellate cell axons and their innervation pattern. We show that stellate axons are organized and guided towards Purkinje cell dendrites by an intermediate scaffold of Bergmann glial (BG) fibers. The L1 family immunoglobulin protein Close Homologue of L1 (CHL1) is localized to apical BG fibers and stellate cells during the development of stellate axon arbors. In the absence of CHL1, stellate axons deviate from BG fibers and show aberrant branching and orientation. Furthermore, synapse formation between aberrant stellate axons and Purkinje dendrites is reduced and cannot be maintained, leading to progressive atrophy of axon terminals. These results establish BG fibers as a guiding scaffold and CHL1 a molecular signal in the organization of stellate axon arbors and in directing their dendritic innervation
    corecore