50 research outputs found

    Educational and Literacy Dimensions of Putian Coastal Folk Songs in Fujian Province, China

    Get PDF
    This study focuses on the educational and literacy dimensions embedded within Putian coastal folk songs in Fujian Province, China. The study investigates the cultural significance and historical development of these folk songs, employing research methods from musicology and ethnomusicology. With a particular emphasis on the coastal region of Putian, the research aims to uncover the educational value and literacy aspects of these traditional musical compositions. The findings reveal the existence of approximately 196 recorded musical works, with nine songs emerging as the most popular in the region. The article also highlights the list of recognized heirs associated with Putian coastal folk songs. Additionally, the study explores the diverse cultural influences that have shaped Putian’s music, including the ancient Minyue culture, the introduction of Han culture from the Central Plains, and the assimilation of Arab, Persian, and European cultural elements. By analyzing the educational and literacy dimensions of Putian coastal folk songs, this research contributes to understanding how music can serve as a catalyst for education and literacy promotion within cultural contexts

    Hollow spherical SiO2 micro-container encapsulation of LiCl for high-performance simultaneous heat reallocation and seawater desalination

    Get PDF
    Energy & fresh water have both become scarce resources in the modern era of human society. Sorption-based technology is environmentally friendly and energy-efficient and can be driven by low-grade energy to transfer energy and produce fresh water. Here, we report a solid sorbent fabricated by encapsulating a hygroscopic salt, lithium chloride (LiCl), inside micro-sized hollow-structured SiO2. This composite sorbent (LiCl@HS) exhibits 6 times faster water vapor sorption kinetics than pure LiCl and a water vapor sorption capacity of 1.7 kg kg-1 at a relative humidity (RH) of 50%, which is the highest ever reported for any solid sorbent in the literature. The low regeneration temperature (<80 °C) and good cycling stability ensure the feasibility of the composite sorbent for use in practical applications. The thermodynamic calculations reveal that the sorbent is able to continuously supply 20 °C temperature lift with a maximum coefficient of performance (COP) for cooling of 0.97 and COP for heating of 1.89 while simultaneously producing 9.05 kg potable water per kilogram sorbent daily using seawater as the source water and solar energy as the sole energy source. A homemade system is developed and its practical performance in providing seasonally switchable heating and cooling along with clean water production from source water with an impaired quality is successfully verified, indicating its great potential

    Transcutaneous auricular vagus nerve stimulation on upper limb motor function with stroke: a functional near-infrared spectroscopy pilot study

    Get PDF
    BackgroundTranscutaneous auricular vagus nerve stimulation (taVNS) emerges as a promising neuromodulatory technique. However, taVNS uses left ear stimulation in stroke survivors with either left or right hemiparesis. Understanding its influence on the cortical responses is pivotal for optimizing post-stroke rehabilitation protocols.ObjectiveThe primary objective of this study was to elucidate the influence of taVNS on cortical responses in stroke patients presenting with either left or right hemiparesis and to discern its potential ramifications for upper limb rehabilitative processes.MethodsWe employed functional near-infrared spectroscopy (fNIRS) to ascertain patterns of cerebral activation in stroke patients as they engaged in a “block transfer” task. Additionally, the Lateralization Index (LI) was utilized to quantify the lateralization dynamics of cerebral functions.ResultsIn patients exhibiting left-side hemiplegia, there was a notable increase in activation within the pre-motor and supplementary motor cortex (PMC-SMC) of the unaffected hemisphere as well as in the left Broca area. Conversely, those with right-side hemiplegia displayed heightened activation in the affected primary somatosensory cortex (PSC) region following treatment.Significantly, taVNS markedly amplified cerebral activation, with a pronounced impact on the left motor cortical network across both cohorts. Intriguingly, the LI showcased consistency, suggesting a harmonized enhancement across both compromised and uncompromised cerebral regions.ConclusionTaVNS can significantly bolster the activation within compromised cerebral territories, particularly within the left motor cortical domain, without destabilizing cerebral lateralization. TaVNS could play a pivotal role in enhancing upper limb functional restoration post-stroke through precise neuromodulatory and neuroplastic interventions

    Strategic research and innovation agenda on circular economy

    Get PDF
    CICERONE aims to bring national, regional and local governments together to jointly tackle the circular economy transition needed to reach net-zero carbon emissions and meet the targets set in the Paris Agreement and EU Green Deal. This document represents one of the key outcomes of the project: a Strategic Research & Innovation Agenda (SRIA) for Europe, to support owners and funders of circular economy programmes in aligning priorities and approaching the circular economy transition in a systemic way

    Dynamics of Polymer Melts and Polymer Nanocomposites Studied by Broadband Dielectric Spectroscopy

    No full text
    Materials based on polymers and polymeric nanocomposites have properties advantageous for many applications. In many cases, the physical behavior is connected to molecular motion. Polymers are macromolecules in which both fast local motions and slower chain relaxations may contribute to the material properties. Answering fundamental questions on the molecular dynamics is challenging, because of the existence of many different processes and the strong temperature dependence of the processes. An investigation covering a broad window over many orders of magnitude in the time scale is needed. Hence, dielectric spectroscopy is an appropriate tool to enhance fundamental understanding. This dissertation pays special attention to derive clear spectra from the experiment to gain better information from the spectral shape. In general, the dielectric permittivity is a superposition with conductivity and polarization, which challenges the delineation of spectra of pure polymer dynamics. Simultaneous data modeling on entangled polyisoprene, PI, allowed separation of the individual contributions, and more reliable information on reptation could be extracted. As an example of this improved approach, the high molecular weight transition to pure reptation, at which contour length fluctuations and constraint release cease, was found to be at least one order of magnitude higher than previously anticipated values. The spectral shape of unentangled polymers was analyzed to test different concepts and suggestions obtained from a variety of different models. Deviating from both theoretical and empirical models, the spectra indicate processes which have not been considered before. The monomeric friction coefficient seems to depend on the position of monomer in the polymer chains. To find this influence on dielectric spectrum, the end block relaxation was introduced on unentangled polymers. The results could partially explain the discrepancy between models and experimental data and are compatible with the those from simulation and experiments on other polymers. Analyzing polymer nanocomposites through previously built methods, it was observed that the spectral shape of chain dynamics and segmental relaxation have been both altered with the presence of nanoparticles, together with both chain and segmental dynamics being slowed down. The nanoparticle contribution seems to be a non-linear process and coupling effect needs to be considered

    MFS Transporters and GABA Metabolism Are Involved in the Self-Defense Against DON in Fusarium graminearum

    No full text
    Trichothecene mycotoxins, such as deoxynivalenol (DON) produced by the fungal pathogen, Fusarium graminearum, are not only important for plant infection but are also harmful to human and animal health. Trichothecene targets the ribosomal protein Rpl3 that is conserved in eukaryotes. Hence, a self-defense mechanism must exist in DON-producing fungi. It is reported that TRI (trichothecene biosynthesis) 101 and TRI12 are two genes responsible for self-defense against trichothecene toxins in Fusarium. In this study, however, we found that simultaneous disruption of TRI101 and TRI12 has no obvious influence on DON resistance upon exogenous DON treatment in F. graminearum, suggesting that other mechanisms may be involved in self-defense. By using RNA-seq, we identified 253 genes specifically induced in DON-treated cultures compared with samples from cultures treated or untreated with cycloheximide, a commonly used inhibitor of eukaryotic protein synthesis. We found that transporter genes are significantly enriched in this group of DON-induced genes. Of those genes, 15 encode major facilitator superfamily transporters likely involved in mycotoxin efflux. Significantly, we found that genes involved in the metabolism of gamma-aminobutyric acid (GABA), a known inducer of DON production in F. graminearum, are significantly enriched among the DON-induced genes. The GABA biosynthesis gene PROLINE UTILIZATION 2-2 (PUT2-2) is downregulated, while GABA degradation genes are upregulated at least twofold upon treatment with DON, resulting in decreased levels of GABA. Taken together, our results suggest that transporters influencing DON efflux are important for self-defense and that GABA mediates the balance of DON production and self-defense in F. graminearum

    Crashworthiness Analysis and Multi-Objective Optimization for Concave I-Shaped Honeycomb Structure

    No full text
    Due to their superior structural and mechanical properties, materials with negative Poisson&rsquo;s ratio are of increasing interest to research scholars, especially in fuel-efficient vehicles. In this work, a new concave I-shaped honeycomb structure is established by integrating the re-entrant hexagon and the I-shaped beam structure, and its negative Poisson&rsquo;s ratio characteristics and energy absorption properties are investigated. The effect of structural parameters on the energy absorption characteristics is analyzed using the finite element model. The results show that both the specific energy absorption and peak impact force decrease with the increase in cellular length and vertical short cellular height, and increase with the increase in horizontal short cellular length and cellular thickness. To obtain a smaller peak impact force and larger specific energy absorption with smaller mass, the four cell sizes were optimized by using Latin hypercube sampling, Gaussian radial basis function, and non-dominated sorting genetic algorithm II (NSGA-II). Compared with the original design, the SEA increased by 44.175%, and the PCF increased by 25.857%. Meanwhile, the mass decreased by 31.140%. Hence, the optimal structure has better crashworthiness

    Crashworthiness Analysis and Multi-Objective Optimization for Concave I-Shaped Honeycomb Structure

    No full text
    Due to their superior structural and mechanical properties, materials with negative Poisson’s ratio are of increasing interest to research scholars, especially in fuel-efficient vehicles. In this work, a new concave I-shaped honeycomb structure is established by integrating the re-entrant hexagon and the I-shaped beam structure, and its negative Poisson’s ratio characteristics and energy absorption properties are investigated. The effect of structural parameters on the energy absorption characteristics is analyzed using the finite element model. The results show that both the specific energy absorption and peak impact force decrease with the increase in cellular length and vertical short cellular height, and increase with the increase in horizontal short cellular length and cellular thickness. To obtain a smaller peak impact force and larger specific energy absorption with smaller mass, the four cell sizes were optimized by using Latin hypercube sampling, Gaussian radial basis function, and non-dominated sorting genetic algorithm II (NSGA-II). Compared with the original design, the SEA increased by 44.175%, and the PCF increased by 25.857%. Meanwhile, the mass decreased by 31.140%. Hence, the optimal structure has better crashworthiness

    Rapid and Efficient Multiple Healing of Flexible Conductive Films by Near-Infrared Light Irradiation

    No full text
    Healable, electrically conductive films are essential for the fabrication of reliable electronic devices to reduce their replacement and maintenance costs. Here we report the fabrication of near-infrared (NIR) light-enabled healable, highly electrically conductive films by depositing silver nanowires (AgNWs) on polycaprolactone (PCL)/poly­(vinyl alcohol) (PVA) composite films. The bilayer film has sheet resistance as low as 0.25 Ω·sq<sup>–1</sup> and shows good flexibility to repeated bending/unbending treatments. Multiple healing of electrical conductivity lose caused by cuts of several tens of micrometers wide on the bilayer film can be conveniently achieved by irradiating the film with mild NIR light. The AgNW layer functions not only as an electrical conductor but also as a NIR light-induced heater to initiate the healing of PCL/PVA film, which then imparts its healability to the conductive AgNW layer
    corecore