9,266 research outputs found

    Detect-and-Avoid: Flight Test 6 Scripted Encounters Data Analysis

    Get PDF
    The Unmanned Aircraft System (UAS) in the National Airspace System (NAS) project conducted Flight Test 6 (FT6) in 2019. The ultimate goal of this flight test was to produce data to inform RTCA SC-228's Phase II Minimum Operational Performance Standards (MOPS) for Detect and Avoid (DAA) and Low Size, Weight, and Power Sensors. This report documents the analysis of scripted encounters' data. Scripted encounters own were analyzed and categorized based on the outcome of alert, maneuver guidance, and effectiveness of pilots' maneuver in resolving conflicts. Results indicate that UAS pilots' decisions as well as intruder maneuvers are leading factors that contribute to ineffective DAA maneuvers. Results also show that adding buffers to the DAA's suggested minimum turn angle improves effectiveness of the DAA maneuvers

    Weak ties: Subtle role of information diffusion in online social networks

    Full text link
    As a social media, online social networks play a vital role in the social information diffusion. However, due to its unique complexity, the mechanism of the diffusion in online social networks is different from the ones in other types of networks and remains unclear to us. Meanwhile, few works have been done to reveal the coupled dynamics of both the structure and the diffusion of online social networks. To this end, in this paper, we propose a model to investigate how the structure is coupled with the diffusion in online social networks from the view of weak ties. Through numerical experiments on large-scale online social networks, we find that in contrast to some previous research results, selecting weak ties preferentially to republish cannot make the information diffuse quickly, while random selection can achieve this goal. However, when we remove the weak ties gradually, the coverage of the information will drop sharply even in the case of random selection. We also give a reasonable explanation for this by extra analysis and experiments. Finally, we conclude that weak ties play a subtle role in the information diffusion in online social networks. On one hand, they act as bridges to connect isolated local communities together and break through the local trapping of the information. On the other hand, selecting them as preferential paths to republish cannot help the information spread further in the network. As a result, weak ties might be of use in the control of the virus spread and the private information diffusion in real-world applications.Comment: Final version published in PR

    Strategies for Choosing Descent Flight-Path Angles for Small Jets

    Get PDF
    Three candidate strategies for choosing the descent flight path angle (FPA) for small jets are proposed, analyzed, and compared for fuel efficiency under arrival metering conditions. The strategies vary in operational complexity from a universally fixed FPA, or FPA function that varies with descent speed for improved fuel efficiency, to the minimum-fuel FPA computed for each flight based on winds, route, and speed profile. Methodologies for selecting the parameter for the first two strategies are described. The differences in fuel burn are analyzed over a year s worth of arrival traffic and atmospheric conditions recorded for the Dallas/Fort Worth (DFW) Airport during 2011. The results show that the universally fixed FPA strategy (same FPA for all flights, all year) burns on average 26 lbs more fuel per flight as compared to the minimum-fuel solution. This FPA is adapted to the arrival gate (direction of entry to the terminal) and various timespans (season, month and day) to improve fuel efficiency. Compared to a typical FPA of approximately 3 degrees the adapted FPAs vary significantly, up to 1.3 from one arrival gate to another or up to 1.4 from one day to another. Adapting the universally fixed FPA strategy to the arrival gate or to each day reduces the extra fuel burn relative to the minimum-fuel solution by 27% and 34%, respectively. The adaptations to gate and time combined shows up to 57% reduction of the extra fuel burn. The second strategy, an FPA function, contributes a 17% reduction in the 26 lbs of extra fuel burn over the universally fixed FPA strategy. Compared to the corresponding adaptations of the universally fixed FPA, adaptations of the FPA function reduce the extra fuel burn anywhere from 15-23% depending on the extent of adaptation. The combined effect of the FPA function strategy with both directional and temporal adaptation recovers 67% of the extra fuel relative to the minimum-fuel solution

    Lovastatin arrests CHO cells between the origin decision point and the restriction point

    Get PDF
    AbstractAsynchronously growing Chinese hamster ovary (CHO) cells treated with the pro-drug, β-lactone ring form of lovastatin were arrested in G1-phase. Subsequent removal of lovastatin resulted in the synchronous entry of cells into S-phase regardless of the presence of mevalonic acid. Lovastatin-arrested cells contained hypophosphorylated retinoblastoma protein (Rb) and required serum mitogens to enter S-phase after lovastatin removal, indicating that cell-cycle arrest is prior to the restriction point (R-point). However, in contrast to quiescent cells, intact nuclei prepared from lovastatin-arrested cells were competent for DNA replication when introduced into Xenopus egg extracts. Initiation of replication by Xenopus egg cytosol took place specifically within the dihydrofolate reductase (DHFR) origin locus, demonstrating that cells were arrested after the origin decision point (ODP). We conclude that the β-lactone ring form of lovastatin is an effective reagent with which to synchronize CHO cells between the ODP and R-point, without resulting in the withdrawal of cells from the cell-cycle into a quiescent state

    Activation of mammalian Chk1 during DNA replication arrest: a role for Chk1 in the intra-S phase checkpoint monitoring replication origin firing

    Get PDF
    Checkpoints maintain order and fidelity in the cell cycle by blocking late-occurring events when earlier events are improperly executed. Here we describe evidence for the participation of Chk1 in an intra-S phase checkpoint in mammalian cells. We show that both Chk1 and Chk2 are phosphorylated and activated in a caffeine-sensitive signaling pathway during S phase, but only in response to replication blocks, not during normal S phase progression. Replication block–induced activation of Chk1 and Chk2 occurs normally in ataxia telangiectasia (AT) cells, which are deficient in the S phase response to ionizing radiation (IR). Resumption of synthesis after removal of replication blocks correlates with the inactivation of Chk1 but not Chk2. Using a selective small molecule inhibitor, cells lacking Chk1 function show a progressive change in the global pattern of replication origin firing in the absence of any DNA replication. Thus, Chk1 is apparently necessary for an intra-S phase checkpoint, ensuring that activation of late replication origins is blocked and arrested replication fork integrity is maintained when DNA synthesis is inhibited

    A longitudinal study of muscle rehabilitation in the lower leg after cast removal using Magnetic Resonance Imaging and strength assessment

    Get PDF
    Acknowledgements We thank the A&E nurses and plaster technicians for identifying suitable patients, the MRI radiographers for performing the scanning, Dr Scott Semple for invaluable help in some of the pilot studies and Mr E. C. Stevenson for constructing the footrest used in the scanner. We are very grateful to the dedicated patients themselves who gave considerable amounts of time to come in for scanning, exercise and assessment during the course of this study.Peer reviewedPublisher PD

    Hole spin relaxation and coefficients in Landau-Lifshitz-Gilbert equation in ferromagnetic GaMnAs

    Full text link
    We investigate the temperature dependence of the coefficients in the Landau-Lifshitz-Gilbert equation in ferromagnetic GaMnAs by employing the Zener model. We first calculate the hole spin relaxation time based on the microscopic kinetic equation. We find that the hole spin relaxation time is typically several tens femtoseconds and can present a nonmonotonic temperature dependence due to the variation of the interband spin mixing, influenced by the temperature related Zeeman splitting. With the hole spin relaxation time, we are able to calculate the coefficients in the Landau-Lifshitz-Gilbert equation, such as the Gilbert damping, nonadiabatic spin torque, spin stiffness and vertical spin stiffness coefficients. We find that the nonadiabatic spin torque coefficient β\beta is around 0.10.30.1\sim 0.3 at low temperature, which is consistent with the experiment [Adam {\em et al.}, Phys. Rev. B {\bf 80}, 193204 (2009)]. As the temperature increases, β\beta monotonically increases and can exceed one in the vicinity of the Curie temperature. In the low temperature regime with β<1\beta<1, the Gilbert damping coefficient α\alpha increases with temperature, showing good agreement with the experiments [Sinova {\em et al.}, Phys. Rev. B {\bf 69}, 085209 (2004); Khazen {\em et al.}, {\em ibid.} {\bf 78}, 195210 (2008)]. Furthermore, we predict that α\alpha decreases with increasing temperature once β>1\beta>1 near the Curie temperature. We also find that the spin stiffness decreases with increasing temperature, especially near the Curie temperature due to the modification of the finite β\beta. Similar to the Gilbert damping, the vertical spin stiffness coefficient is also found to be nonmonotonically dependent on the temperature.Comment: 10 pages, 7 figure

    Computational models for inferring biochemical networks

    Get PDF
    Biochemical networks are of great practical importance. The interaction of biological compounds in cells has been enforced to a proper understanding by the numerous bioinformatics projects, which contributed to a vast amount of biological information. The construction of biochemical systems (systems of chemical reactions), which include both topology and kinetic constants of the chemical reactions, is NP-hard and is a well-studied system biology problem. In this paper, we propose a hybrid architecture, which combines genetic programming and simulated annealing in order to generate and optimize both the topology (the network) and the reaction rates of a biochemical system. Simulations and analysis of an artificial model and three real models (two models and the noisy version of one of them) show promising results for the proposed method.The Romanian National Authority for Scientific Research, CNDI–UEFISCDI, Project No. PN-II-PT-PCCA-2011-3.2-0917

    Age-related changes in the effects of strength training on lower leg muscles in healthy individuals measured using MRI

    Get PDF
    BACKGROUND: We previously measured the rate of regaining muscle strength during rehabilitation of lower leg muscles in patients following lower leg casting. Our primary aim in this study was to measure the rate of gain of strength in healthy individuals undergoing a similar training regime. Our secondary aim was to test the ability of MRI to provide a biomarker for muscle function. METHODS: Men and women were recruited in three age groups: 20-30, 50-65 and over 70 years. Their response to resistance training of the right lower leg twice a week for 8 weeks was monitored using a dynamometer and MRI of tibialis anterior, soleus and gastrocnemius muscles at 2 weekly intervals to measure muscle size (anatomical cross-sectional area (ACSA)) and quality (T2 relaxation). Forty-four volunteers completed the study. RESULTS: Baseline strength declined with age. Training had no effect in middle-aged females or in elderly men in dorsiflexion. Other groups significantly increased both plantarflexion and dorsiflexion strength at rates up to 5.5 N m week(-1) in young females in plantarflexion and 1.25 N m week(-1) in young males in dorsiflexion. No changes were observed in ACSA or T2 in any age group in any muscle. CONCLUSION: Exercise training improves muscle strength in males at all ages except the elderly in dorsiflexion. Responses in females were less clear with variation across age and muscle groups. These results were not reflected in simple MRI measures that do not, therefore, provide a good biomarker for muscle atrophy or the efficacy of rehabilitation
    corecore