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Magnetic resonance imaging (MRI) was used to investigate muscle rehabilitation following cast immobilization. The aim
was to explore MRI as an imaging biomarker of muscle function. Sixteen patients completed an eight-week rehabilitation
programme following six weeks of cast immobilization for an ankle fracture. MRI of the lower leg was performed at two-
week intervals for 14 weeks. Total volume and anatomical cross-sectional areas at 70% of the distance from lateral malleo-
lus to tibial tuberosity (ACSA) were measured for tibialis anterior (TA), medial and lateral gastrocnemius (GM and GL)
and soleus (SOL). Pennation angle of muscle fascicules was measured at the same position in GM. Fractional fat/water
contents and T2 relaxation times before and after exercise were calculated. Strength was measured as maximum isometric
torque developed in plantar- and dorsi-flexion. Torque increased by (mean [SD]) 1.10 (0.32) N m day−1 in males, 0.74
(0.43) N m day−1 in females in plantar-flexion (0.9% of final strength per day), and 0.36 (0.15) N m day−1 in males, 0.28
(0.19) N m day−1 in females in dorsi-flexion (1.1% per day). Neither difference between males and females was significant.
Volume and ACSA of muscles recovered by week 14 apart from SOL which was still 6.8% smaller (p = 0.006) than the
contralateral leg. T2 peaked at the end of the cast period for TA and SOL, and at week 8 for GM before returning to
baseline. Pennation angle recovered rapidly following cast removal. Quantitative MRI can generate markers of muscle
biomechanics and indicates that many of these return to baseline within eight weeks of remobilization.

Keywords: muscles; magnetic resonance imaging; injury biomechanics; rehabilitation; biomarkers; exercise

Introduction

Lower leg immobilization with a cast is a standard of
care after fracture of the ankle. Inactivity or disuse as a
result of immobilization causes numerous adaptive
changes in the skeletal muscle, such as a decrease in
muscle protein turnover (Gibson et al. 1987), alterations
in muscle architecture (Blazevich & Sharp 2005),
changes in expression of genes associated with the reg-
ulation of muscle mass (Jones et al. 2004), with the
ubiquitin–proteasome and Akt pathways (Urso et al.
2006), and reductions in mitochondrial capacity (Gram
et al. 2014), with reduced muscular function as a final
outcome. This was recently reviewed by Bostock et al.
(2013). Loss of muscle mass (muscular atrophy) is a
recognized consequence of muscle disuse, with loss of
muscle strength being pronounced (Berg et al. 1991,
1997; Hather et al. 1992; Greenhaff 2006).

Few longitudinal studies have been conducted to
study the reversibility of the muscular changes induced
by immobilization in humans (Vandenborne et al. 1998;
Stevens et al. 2004; Grosset & Onambele-Pearson 2008).
Some of the more detailed studies are limited to case
reports on individuals (Vandenborne et al. 1998; Grosset
& Onambele-Pearson 2008). Others used larger cohorts
of patients but with limited time points (Stevens et al.
2004) or shorter periods of immobilization (Wall et al.
2014). Muscle activation was shown to increase rapidly,
while muscle hypertrophy followed more slowly in nine
young subjects using magnetic resonance imaging (MRI)
to measure muscle cross-sectional area immediately fol-
lowing cast removal for ankle fracture and again five
and 10 weeks later (Stevens et al. 2006). If MR imaging
is to serve as a biomarker, it is important to know more
about possible differences in response to immobilization
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following injury between various lower leg muscles and
the effectiveness of rehabilitation at more closely spaced
time points. In addition, the effects on recovery of
patient age and sex remain unclear.

MRI can delineate soft tissues and measure chemical
and structural changes non-invasively and so has great
potential for the development of imaging biomarkers of
physiological processes or pathology. The ratio of fat to
water, as measured by the Dixon MR technique, is an
important indicator of muscle quality since a muscle with
a high proportion of fat has less contractile tissue (and
thus lower ability to generate force) than an equally
sized muscle with a lower proportion of fat. T2 values
are also an indicator of muscle quality since they relate
to various aspects of the muscle such as fibre type
(Kuno et al. 1990), water content and fat content. Muscle
atrophy, involving atrophy of type 2 fibres, in particular,
is associated with lengthening T2 relaxation times
(Hatakenaka et al. 2001). Inactivity has been found to be
associated with decreases in strength and increases in fat
in young (Manini et al. 2007) and older people (Marcus
et al. 2010), with exercise training reducing the quantity
of intramuscular fat (Marcus et al. 2010). In another
study, however, five-day limb immobilization resulted in
no measurable changes in muscle fat (Wall et al. 2015).

We have previously reported the utility of MRI as an
imaging biomarker to measure changes in muscle proper-
ties during a prolonged period of lower leg immobiliza-
tion in patients after ankle injury (Psatha et al. 2012).
The purpose of this study was to monitor the changes in
those same muscles during a rehabilitation programme
that immediately followed immobilization and to deter-
mine the effects of that programme on muscle function.
Using MRI, we studied the plantar flexors and extensors
of the same patients at two-weekly intervals during eight
weeks of rehabilitation following cast removal. In addi-
tion, muscle strength gains were assessed during the reha-
bilitation period using maximal voluntary isometric
contractions. Our aim was to investigate the utility of
MRI as an imaging biomarker of changes in muscle
structures and function, and to generate MRI reference
data for the kinetics of the atrophy and recovery of major
lower limb muscles during and after limb immobilization.

Methods

Participants

Eighteen patients (eight males, 10 females) (aged over
18) had one lower leg immobilized with a below knee
cast following an ankle fracture not requiring manipula-
tion or fixation (13 right, five left). Initially identified
when they attended the Accident and Emergency Depart-
ment, they were given an information sheet and invited
to take part in the study. Further contact was made after
24 h and, if suitable on pre-screening and willing to take

part, patients were invited to return to the clinic where
the study was explained in more detail. Participants then
gave written informed consent to the study, as approved
by the North of Scotland Research Ethics Service
(reference number 08/S0801/101) and NHS Research
and Development. All then underwent a full screening
process and had their first MR scan. Patients were
excluded if, within the previous two years, they reported
taking medication that might affect muscle function, had
diabetes, uncontrolled thyroid disease, known con-
traindication to MR scanning, body mass index over 35,
moderate to severe cardiac illness or thrombophlebitis. In
addition, eligible patients were also excluded if they
lived too far from the hospital and could not easily
attend for the MRI examinations and rehabilitation ses-
sions. All participants gave written informed consent, as
approved by the North of Scotland Research Ethics
Service (reference number 08/S0801/101).

Study design

Cast application defined study day 0 and cast removal
occurred after six weeks (study day 43). Subsequently,
participants undertook an eight-week period of strength
training with strength assessment every two weeks. Sub-
jects were invited for MRI examinations (Philips
Achieva 3.0 T) on study days 3, 5, 8, 15, week 4 (day
29), week 6 (day 43, cast removed), week 8 (day 57),
week 10 (day 71), week 12 (day 85) and week 14 (day
99). Because of patient or MRI machine availability, the
actual scan days did not always coincide with the study
days and not every patient had every scan. Full details
of the cast phase were reported previously (Psatha et al.
2012) and here we describe the recovery phase following
cast removal. Some cast data are included for compar-
ison and to enable generation of an estimate of pre-injury
values for image-derived parameters.

MRI protocols

Imaging was done using a Philips Achieva 3.0-T whole-
body MRI scanner using a Philips 16 channel SENSE
XL Torso coil enclosing the lower legs, which were
imaged simultaneously. Patients lay supine with their feet
going in first. The knees were extended and relaxed with
the feet and legs strapped into a custom-made Perspex
frame using Velcro straps. The angle of the ankle for
both legs was defined originally by the cast leg. Scan
positions were defined with respect to the tibial tuberos-
ity and the inferior tip of lateral malleolus using cod
liver oil softgel capsules as described previously (Psatha
et al. 2012). The distance between these landmarks was
calculated and a marker was placed at 70% of this
distance craniad from the malleolus, corresponding to the
bulkiest part of the calf muscles. This marker was used
for reproducible slice positioning during image
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acquisition and subsequent analysis. A high-resolution
3D T1-weighted gradient-echo image was used as the
anatomical reference for all subsequent scan sequences.
Details of the imaging protocols have been described
fully elsewhere (Psatha et al. 2012) and are described
here briefly under each measurement. Quality assurance
for MRI was performed every month using two phan-
toms to ensure that the required properties of the scanned
objects were properly measured.

Image analysis

Image analysis tools were developed using MATLAB
(The Mathworks Inc., Natick, MA, USA) and Java to
measure cross-sectional areas, pennation angles, water/fat
fraction and T2 relaxation times (Psatha et al. 2012).
Regions of interest (ROI) were defined in each muscle
by segmenting the image around the muscle boundaries.
All measurements were made in the same way on both
the cast leg and the contralateral leg.

To measure muscle volume and anatomical cross-
sectional area (ACSA), T1-weighted spin-echo images
(repetition time, TR = 568 ms, echo time, TE = 20 ms,
acquisition matrix 508 × 362) were acquired in two
blocks of 20 slices (slice thickness 2.5 mm, spacing
10 mm) to span the length of the lower leg. The ACSAs
were measured at the 70% position for the main dorsi
flexor of the foot, tibialis anterior (TA) and the plantar
flexors gastrocnemius, considered separately as medialis
(GM) and lateralis (GL), and soleus (SOL). Total muscle
volume was calculated as the product of the sum of these
ACSAs and the distance between the most distal part of
the gastrocnemius and the most proximal part of the tib-
ial plateau and expressed as a fractional change. This
was found previously to reflect accurately the fractional
change in the true muscle volume (Psatha et al. 2012).

Pennation angle in the medial gastrocnemius at the
70% position was measured from a high-resolution
T1-weighted spin-echo image sequence orientated perpen-
dicular to the plane of the tibia and fibula. The acquisition
matrix was 800 × 722, TR = 493 ms, TE = 12 ms, and the
slice thickness was 2 mm with spacing 2.25 mm.

T2 relaxation times were measured in each of TA,
GM and SOL from −1/slope of the regression line of the
natural log of the signal vs. echo time (TE). Eight spin
echoes were recorded (TR = 3000 ms, TE 8 × 10 ms).
The acquisition matrix was 200 × 94 (slice thickness
5.0 mm and spacing 5.0 mm). The final scans in an
imaging session comprised measurements of T2 in rested
and exercised muscle. The exercise protocol consisted of
repeated two-legged heel raises performed at a rate of 80
raises per minute. The duration of exercise was deter-
mined during the first visit when volunteers exercised
until they reached rating 5 on the BORG scale of per-
ceived exertion (Borg 1982) (which corresponds to

heavy exercise; at this level the participant finds the
exercise hard). This protocol was designed to exercise
maximally each individual while taking account of initial
differences in the fitness level. On average, the exercise
lasted for about 2 min with the subject returning to the
scanner within 3–4 min of the exercise ending.

Fractional water contents were calculated in the same
ROIs as above using IDEAL (iterative decomposition of
water and fat with echo asymmetry and least-squares
estimation), which enables fractional fat and water
contents to be measured on the assumption that the total
signal arises only from fat and water (Glover 1991; Reeder
et al. 2005). Results are shown as fractional water
(fractional fat is equal to 1 − fractional water).

Strength training and assessment

Patients undertook an eight-week schedule of supervised
strength training of the injured lower leg, with two train-
ing sessions a week. A protocol of isokinetic exercise
was performed using a KIN-COM dynamometer. Patients
lay supine with their leg secured and an additional strap
around the waist. The foot of the injured leg was secured
to the footplate with the lateral malleolus aligned with
the axis of rotation. The footplate was set with a con-
stant lever arm of 21 cm and the resting position was
90°. Participants were asked to perform maximal plantar
flexion between 100° and 120° of ankle flexion at an
angular speed of 45° s−1 and follow it by maximal dorsi-
flexion to return the ankle to the starting position at a
speed of 60° s−1. Our pilot experiments showed these
slow velocities were better suited for exercising lower
leg muscles predominated by slow-contracting type-I
fibres compared with 180° s−1 which was used in
strength training of quadriceps containing equal propor-
tions of type-I and type-II fibres (Johnson et al. 1973;
Greenhaff 2006). The exercise protocol comprised six sets
of 10 maximal movement repetitions with one-minute
recovery between each. All participants were able to
perform this exercise even during the initial stages of
training after cast removal.

Strength was assessed by measuring the maximum
torque at optimal ankle positions for the maximum iso-
metric voluntary contraction (MVC), i.e. 90° for plantar-
flexion and 105° for dorsi-flexion in the ankle joint using
a constant arm length on the dynamometer of 21 cm
(Fukunaga et al. 1996). Participants were instructed to
exert their maximum effort for 5 s, first in plantar-flexion
followed immediately by dorsi-flexion. This was
performed three times at one-minute intervals.

Statistical analysis

Results are plotted as a function of mean scan day and
lateral error bars indicate the standard deviation of the
actual scan days, which, especially towards the end of
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the study, could be taken anything up to three days either
side of the designated study day. Study day 5 was taken
to be the baseline and total volume and cross-sectional
area are plotted as fractional change from baseline as the
absolute values clearly depend on the size of each indi-
vidual. Absolute values are plotted for pennation angle,
T2 relaxation time and fractional water content. Data
were tested for normality and normally distributed data
are shown as mean (standard deviation, SD), otherwise
median [25, 75%] is given. Statistically significant differ-
ences over time from baseline for cast and contralateral
legs separately and the difference between cast and con-
tralateral legs were explored using repeated measures
ANOVA. Pairwise comparisons were made using a
Holm-Sidak test. Before-and-after comparisons were
done using a paired t-test. Statistical and plotting soft-
ware used was Sigmaplot for Windows version 11.0
(Systat Software Inc.).

Results

From the 205 patients with one lower leg immobilized in
a cast invited for screening, 129 met the inclusion crite-
ria, but, of these, 55 were subsequently excluded on the
grounds of distance or commitment. Of those remaining,
20 patients agreed to participate and 18 of these com-
pleted the cast part study and entered the rehabilitation
phase, one of whom was in a cast for shorter than the
expected six weeks of immobilization phase. Sixteen
patients completed the study (Table 1). Twelve patients
had the right and four the left lower leg immobilized.
No differences were found between males and females
for any of the measures except for the daily increment of
strength gain and so data are shown combined unless
stated otherwise. Total muscle volume increased follow-
ing cast removal but still showed a significant deficit of
6% (p = 0.007) by the end of the study compared with
the day 5 starting value (Figure 1). Similar recovery was
seen in each muscle as shown by the separate ACSA
values. In the cast leg, TA, GM and GL had recovered
to match those in the contralateral leg by study day 71.
The exception was SOL, which not only incurred the
greatest loss but still had a significant deficit at the end
of the study (−5.5% compared with day 5 baseline
(p = 0.01), −6.8% compared with contralateral
(p < 0.006) (Figure 2)). The small reduction in ACSA in
the contralateral leg appeared to recover rapidly after cast

removal but did not return fully to baseline values in
gastrocnemii, while SOL and TA both overshot the 5-
day baseline; SOL by 2.3 (6.6)% and TA by 6.1 (6.1)%.

Because T2 relaxation times in the contralateral leg
remained constant throughout the cast and recovery peri-
ods, they were used as a comparison for the cast leg. In
the cast leg, following a peak at the end of the cast per-
iod, T2 values fell steadily and returned to baseline by
week 14 for TA and SOL (Figure 3). In SOL, the differ-
ence between cast and contralateral legs was significant
(weeks 8 and 10: p < 0.001, day 85 p = 0.042) until
week 14 (p = 0.12). T2 values in gastrocnemius, how-
ever, continued to rise for a further two weeks after cast
removal before starting to return to baseline; the differ-
ence between cast and contralateral legs was significant
(p < 0.001) independently of the study day.

Exercising muscle is expected briefly to increase the
T2 relaxation time, but no increase could be detected in TA
in either leg (Figure 4). Both GM and SOL showed an
increased T2 after exercise. The difference between pre-
and post-exercise for SOL did not change with time after
cast removal (p = 0.41), but the mean increases were
significantly different between legs: 1.53 (1.50) ms in the
cast leg vs. 2.27 (1.54) ms (p = 0.022) in the contralateral
leg, representing increases of 3.9 and 6.5%, respectively.

Table 1. Details of the patients who completed the study.

Age Height (cm) Weight (kg) Left/right cast

Males (7) 32 [22–39] 177.7 (4.9) 81.5 (16.3) 2/5
Females (9) 53 [39–73] 159.8 (9.1) 72.5 (13.3) 2/7

Note: Data are presented as mean (SD) or [range] as appropriate.
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Figure 1. Total muscle volume increased after cast removal at
week 6, but in the cast leg was still significantly different from
baseline (p = 0.007) by the end of the study.
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GM showed the largest difference between pre- and post-
exercise, exercise leading to an increase of 9.1% for the
cast leg and 12.1% for the contralateral leg. The increases
found between cast (3.6 (1.8) ms) and contralateral (4.3
(2.2) ms) legs were not significantly different (p = 0.12).

The angle between the muscle fascicules of GM and
the aponeurosis decreased significantly to 20.6° (3.5°) by
week 4 in the cast leg (p < 0.001), but recovery was
rapid following removal of the cast (Figure 5), returning
to baseline values within the two weeks following cast

removal. The mean value in the contralateral leg was
24.3° (3.6°) and no change was seen over the whole
time course.

There was no clear evidence for any change in frac-
tional water content in any muscle over the period of this
study (weeks 6–14) (Figure 6). Although the fractional
water content of the cast leg was almost always lower
than the contralateral leg, this was only significant for
SOL (p < 0.001) and showed no difference before and
after removal of the cast.
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(c) Gastrocnemius lateralis
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Figure 2. Changes in anatomical cross-sectional area of each muscle during casting and after cast removal normalized to a baseline
value on study day 5.
Notes: SOL had the greatest amount to recovery but was still smaller than in the contralateral leg at the end of the study (p = 0.006).
TA, GM and GL recovered to match those in the contralateral leg by week 10.
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The strength of the patients’ lower leg muscles
showed a significant deficit after removal of the cast,
p < 0.001 for both plantar and dorsi flexors, compared
with final values measured at week 14; being on average
only 61% (13%) of the final value in dorsiflexion and
49% (16%) in plantar-flexion. Both increased significantly
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Figure 3. Measured T2 values in three muscle groups.
Notes: Measurements in patients after cast removal (week 6)
were taken before exercise. During rehabilitation, differences
between cast and contralateral leg in TA were not significant.
In SOL, the difference was significant on weeks 8, 10
(p < 0.001) and 12 (p = 0.042). For gastrocnemius, the differ-
ence between cast and contralateral legs was significant
(p < 0.001) independently of rehabilitation period.

Figure 4. T2 increased after exercise in SOL and GM, but this
increase did not alter with time after cast removal.
Note: Only in SOL did the difference between the cast and
contra lateral legs reach statistical significance.
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Figure 5. The muscle fibre pennation angle recovered rapidly
after cast removal and returned to baseline values within two
weeks.
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during the recovery phase as shown in Figure 7. Linear
regression on data from males and females separately
enabled calculation of a daily increment from the gradient
of the MVC vs. scan day plots for each individual. These
showed that there was an average increase in torque
generated of 1.10 (0.32) N m day−1 in males, 0.74 (0.43)
N m day−1 in females in plantar-flexion, and 0.36 (0.15)
N m day−1 in males, 0.28 (0.19) N m day−1 in females in
dorsi-flexion, although these differences between males
and females did not reach significance in either plantar-
(p = 0.092) or dorsi-flexion (p = 0.38). One female
showed no improvement over the period of training
between days 74 and 130; she could not flex her ankle to
105° at week 6, so no data earlier than week 10 (day 74)
are available. Although in absolute terms, male patients
thus appeared to regain strength faster than the female
patients, expressed as a percentage of final muscle
strength, the average daily gain in strength was 0.87%
(0.47%) in dorsi-flexion and 1.1% (0.4%) in plantar-flex-
ion in both males and females. The male patients were
younger (Table 1) than the females and for the females in
dorsi-flexion, there was a significant negative correlation
of daily torque increment with age (r = −0.68, p = 0.045)
(Figure 8). A positive correlation was found between mus-
cle cross-sectional area and measured torque for the plan-
tar flexors combined (r = 0.57, p < 0.001) and for TA
(r = 0.79, p < 0.001). The MVC torque per unit cross-sec-
tional area of muscle increased linearly from 1.41 (0.66)
to 2.55 (0.59) N m cm−2 in the plantar flexors and 3.78
(0.81) to 5.58 (0.96) N m cm−2 in the dorsi flexors over
the period from cast off to week 8 of rehabilitation. The
ACSA of the dorsi flexor, TA, returned rapidly to baseline
values, although dorsi-flexion strength continued to
increase throughout the rehabilitation phase.

Discussion

A number of findings arise from this study. Lower leg
muscles showed heterogeneity in the recovery of mus-
cle size during eight weeks of rehabilitation involving
strength training. Perhaps not surprisingly, older
women recovered more slowly than younger men.
Muscles that showed the greatest loss of size during
immobilization, such as the soleus muscle, took the
longest time to recover. Parameters associated with
muscle structural properties, such as T2 relaxation time,
appeared to recover before the volume of the muscle
was restored.

For this study, we recruited patients attending hospi-
tal following a fractured ankle who were treated with a
lower leg cast. There was no attempt to match for age,
although approximately equal numbers of males and
females were sought at recruitment. Overall, most of the
factors we measured improved over the course of the
rehabilitation period and may represent features that
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Figure 6. The fractional water content did not change in any
muscle over the whole period of the study and cast removal
had no effect.
Note: The difference between cast and contralateral legs was
only significant for SOL (p < 0.001).
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could be used as imaging biomarkers to assess muscle
quality and quantity. Factors reflecting muscle size and
strength, e.g. ACSA, were still changing after eight
weeks of rehabilitation, but those more dependent on
muscle structure and composition, e.g. T2, had largely
returned to baseline values. At the start of the study, we
had to take baseline values from scans at five days post-
injury due to restrictions imposed by the Ethics Commit-
tee on gaining informed consent and the availability of
the scanner and the patient. Major changes in size and
MRI features may already have occurred by this time, as
indicated by the differences between injured and con-
tralateral legs, but data obtained during limb immobiliza-
tion are included here for completeness to enable these
comparisons to be made. The significance of the results

from the cast phase, however, is discussed in more detail
elsewhere (Psatha et al. 2012). Repeatability was not
tested in this study in order not to make further demands
on the patients, but measures of T2 and fat/water
(Li et al. 2014), ACSA using similar methods (Fortin &
Battie 2012), and plantarflexion torque using a Kin-Com
dynamometer (Chester et al. 2003) have previously been
reported to have excellent reliability (defined as an
intra-class correlation coefficient of >0.7).

Limb dominance was not recorded as we believe this
to be a secondary effect that our study was not powered to
detect. Studies of limb dominance report inconsistent
results with some finding a difference in strength of 8.6%
between dominant and non-dominant knee extensors
(Lanshammar & Ribom 2011) and a statistically
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Figure 7. Isometric torque developed in plantar-flexion at 90° and in dorsi-flexion at 105° measured by maximum voluntary
contraction (MVC).
Notes: Both increased substantially and significantly during the recovery phase, and linear regression lines are shown for each
individual. One female had the cast removed early and another attended late (day 130) for the final session.
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significant, but only 4%, difference in cross-sectional area
in medial gastrocnemius in young soccer players (Kearns
et al. 2001), while others found no difference in size or
physical function (Fahs et al. 2014). It appears that differ-
ences may be greater in athletes and in our untrained
cohort we would be unlikely to detect any differences.

Muscle volume and its close representative in each
separate muscle, the ACSA, were still lower than base-
line eight weeks after cast removal. Statistically, this was

significant only in soleus, but this is a major plantar
flexor of the ankle and may result in a functionally
important impairment in muscle function (Ratkevicius
et al. 1998). Similar deficits were found by Vandenborne
et al. (1998) in a single individual in whom 10 weeks of
physical therapy following eight weeks in a cast saw
SOL recover to 92% of its initial value, and by Grosset
and Onambele-Pearson (2008) again in a single individ-
ual following a similar procedure, who recorded deficits
of 7% in SOL, 8% in GL and 12% in GM after
10 weeks of physical therapy. A study of a group of 20
individuals undergoing rehabilitation after casting for an
ankle fracture showed that muscle hypertrophy was the
fastest immediately after cast removal and, although
muscle cross-sectional areas had returned almost to nor-
mal by the end of the study, there was a still a deficit in
plantar specific torque of about −20% (Stevens et al.
2004). Strength recovery in this study was by compar-
ison with a parallel healthy group, whereas we had no
baseline values or healthy group; so we cannot determine
whether the patients in our study returned to full
strength. Our finding of a positive correlation, however,
between ACSA and measured plantar-flexion strength
indicates that MRI can provide a biomarker for muscle
function, and this may be particularly true for longitudi-
nal studies in which progressive changes can then be
measured. In dorsi-flexion, muscle strength must arise
from factors in addition to muscle cross-sectional area as
the ACSA returns to baseline within four weeks of cast
removal, whereas strength increases throughout the
rehabilitation period in almost all the patients.

Previous studies have found that an increase in
pennation angle is involved in muscle hypertrophy
(Kawakami et al. 1993). We report here that pennation
angles appeared to return within two weeks of cast
removal to values comparable with those found in the
uninjured leg, which seems overly rapid. A careful com-
parison, however, with the restoration of gastrocnemius
shown in Figure 2(c) suggests that both the ACSA and
the pennation angle in GM start to increase before cast
removal, presumably due to partial load bearing on the
cast leg as the fracture heals. The value of ACSA for
GM is not significantly different from the contralateral
leg at week 8, so it may be that pennation angle is sim-
ply reflecting the overall change in muscle size and
architecture occurring over the final period of casting
and, more rapidly, following cast removal.

Determining full recovery is difficult. Clearly we
could not record strength prior to fracture. The complex-
ity of the study and the demands we were already mak-
ing on the participants precluded measuring strength in
the contralateral leg for comparison. We did, however,
find changes in MRI parameters in the contralateral leg,
possibly due to disuse soon after fracture and then
enhanced use as patients became more mobile but not

Dorsi-flexion

Age / years
10 20 30 40 50 60 70 80

M
VC

 d
ai

ly
 in

cr
em

en
t /

 N
 m

 d
ay

-1

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Female
Male

Plantar-flexion

Age / years
10 20 30 40 50 60 70 80

M
VC

 d
ai

ly
 in

cr
em

en
t /

 N
 m

 d
ay

-1

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
Female
Male

Figure 8. Daily increment in MVC in males and females as a
function of age calculated from the gradient of the regression
line for each individual in Figure 7.
Note: Males were younger and only in females in dorsi-flexion
was there a progressive loss with ageing of the ability to
improve muscle strength (r = −0.68, p = 0.045).
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fully load bearing on the injured leg. This, and possible
confounding effects of side dominance, complicate using
the contralateral leg as a control. We have also observed
a significantly greater increase in muscle strength com-
pared with muscle size during the strength training after
immobilization. This is probably associated with an
improvement in voluntary activation which can be
reduced by more than 40% after lower leg immobiliza-
tion (Stevens et al. 2006). Thus, changes in muscle
strength can be dissociated from changes in muscle size
during recovery after ankle injury.

One advantage of MRI is that it can measure chemi-
cal and structural changes non-invasively and, by the
end of the study, parameters arising from the internal
structure of the muscles (pennation angle, T2) had
returned to values similar to those in the contralateral leg
and/or baseline (Kuno et al. 1990; Hatakenaka et al.
2001; Manini et al. 2007; Marcus et al. 2010; Wall et al.
2015). In a mouse model of reloading following immobi-
lization, T2 values were found to increase during the
reloading phase indicating muscle damage (Frimel et al.
2005). This might explain the pattern of increasing T2
values seen in our study in the GM after cast removal. If
pennation angle and T2 reflect muscle quality, they sug-
gest that although the muscles may not have recovered
their full size, their internal water environment, which
gives rise to the MRI signal and reflects something of
the structure and composition of the tissue, had recov-
ered essentially to baseline values.

Measurements of T2 are reported to depend on the
exercise state of the muscle, increasing with exercise and
returning to baseline values with a half-life of around
8 min (Ababneh et al. 2008). This response depends on
the dominant fibre type found in the muscle; TA, showed
no net response to exercise, whereas soleus and gas-
trocnemius did show a measurable response. The lack of
response of TA may be due to it having too small a
change to have been detected. Pereira et al. (2010) found
the amplitude of EMG measurements to be lower in TA
than gastrocnemius and soleus in heel raising exercises
and Segal and Song (2005) found T2 changes in the TA
after single-leg heel raises to be significantly less than in
gastrocnemius and soleus.

Previous studies have shown that atrophy of the
quadriceps through unweighting results in greater than
normal T2 changes with exercise (Ploutz-Snyder et al.
1995). In our study, however, ΔT2 did not change with
rehabilitation time after cast removal. A number of issues
may underlie this: although the number of heel raises
was fixed, the effort was determined by each individual,
they may have put in different amounts of effort at each
visit as their legs became stronger and that effort may
have been shared differently between legs. Whatever the
reasons, it does not appear to reflect muscle quality and
is unable, therefore, to serve as a biomarker.

Some parameters appeared not to change during
training, e.g. fractional water content and ΔT2. Curi-
ously, fractional water content remained lower than in
the contralateral leg throughout the study, but this may
indicate that a change occurred very early after frac-
ture. We checked that this was not an artefact of posi-
tioning in the scanner by testing for left and right
differences but found none, so we are left with a
small, albeit mostly non-significant, but oddly
consistently one-sided, difference between cast and
contralateral legs.

Dynamic exercise resistance training has often been
used for strength training of large muscle groups such as
knee extensors and flexors (Walker et al. 2014). How-
ever, such training is challenging for plantar flexors and
extensors when movement isolation as well as control of
movement amplitude are required in volunteers after
ankle injury. Our results, as well as findings of others
(Greenhaff 2006) demonstrate that isokinetic exercise
can be an effective means of strength training during
recovery from injury. Using the same isokinetic
dynamometer for both training and testing minimizes the
need for familiarization which would be required for
assessment of one repetition maximum.

The male group in this study was younger, reflecting
sporting injuries rather than accidents, and although there
was no statistical interaction between age and sex, this
may explain why the males recovered strength more
rapidly than the females, although as a fraction of final
strength, which was lower in females, the rate of
increase was the same in males and females. Interest-
ingly, in the females in dorsi-flexion, there was a pro-
gressive loss of ability to strengthen the muscle with a
significant negative correlation between daily strength
increment and age.

In conclusion, this study demonstrates significant dif-
ferences in the patterns of restoration following immobi-
lization among muscles of the lower leg that are
detectable using MRI. The measurements reflect both
gross morphological changes, such as volume and cross-
sectional area, and internal structural features, such as
pennation angle and T2 values. The sensitivity of the
approach is demonstrated by the detection of changes
not only in muscles in the previously immobilized leg
but also, to a lesser extent, in the contralateral leg. Full
restoration of all features was not found even after eight
weeks of rehabilitation including exercise. Thus, MRI
may provide a tool to monitor recovery of individual
muscle bulk and function. Being non-invasive, it could
be used to develop improved rehabilitation exercises
directed at individual muscle groups, which may be of
particular value in high-performance athletes following
injury. New therapies designed to increase speed of
recovery following injury could be monitored objectively
using this imaging technique.

110 M. Psatha et al.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
A

be
rd

ee
n]

 a
t 0

3:
29

 1
3 

A
ug

us
t 2

01
5 



Acknowledgements
We thank the A&E nurses and plaster technicians for identify-
ing suitable patients, the MRI radiographers for performing
the scanning, Dr Scott Semple for invaluable help in some of
the pilot studies and Mr E. C. Stevenson for constructing the
footrest used in the scanner. We are very grateful to the
dedicated patients themselves who gave considerable amounts
of time to come in for scanning, exercise and assessment
during the course of this study.

Disclosure statement
The authors have no conflicts of interest to declare.

Funding
This work was supported by an award [Ref: WHMSB_AU118]
from the Translational Medicine Research Collaboration – a
consortium made up of the Universities of Aberdeen, Dundee,
Edinburgh and Glasgow, the four associated NHS Health
Boards (Grampian, Tayside, Lothian and Greater Glasgow &
Clyde), Scottish Enterprise and Wyeth. The funder played no
part in the design, execution, analysis or publication of this
paper.

ORCID

Henning Wackerhage http://orcid.org/0000-0001-5920-5842
Fiona J. Gilbert http://orcid.org/0000-0002-0124-9962
George P. Ashcroft http://orcid.org/0000-0002-5374-624X
Judith R. Meakin http://orcid.org/0000-0002-7403-185X
Richard M. Aspden http://orcid.org/0000-0002-0693-1194

References
Ababneh ZQ, Ababneh R, Maier SE, Winalski CS, Oshio

K, Ababneh AM, Mulkern RV. 2008. On the correlation
between T2 and tissue diffusion coefficients in exercised
muscle: quantitative measurements at 3T within the tibialis
anterior. Magn Reson Mater Phys Biol Med. 21:273–278.

Berg HE, Dudley GA, Haggmark T, Ohlsen H, Tesch PA. 1991.
Effects of lower limb unloading on skeletal muscle mass and
function in humans. J Appl Physiol. 70:1882–1885.

Berg HE, Larsson L, Tesch PA. 1997. Lower limb skeletal
muscle function after 6 wk of bed rest. J Appl Physiol.
82:182–188.

Blazevich AJ, Sharp NC. 2005. Understanding muscle architec-
tural adaptation: macro- and micro-level research. Cells Tis-
sues Organs. 181:1–10.

Borg GA. 1982. Psychophysical bases of perceived exertion.
Med Sci Sports Exercise. 14:377–381.

Bostock EL, Morse CI, Winwood K, McEwan I, Onambélé-
Pearson GL. 2013. Hypo-activity induced skeletal muscle
atrophy and potential nutritional interventions: a review.
World J Transl Med. 2:36–48.

Chester R, Costa ML, Shepstone L, Donell ST. 2003. Reliabil-
ity of isokinetic dynamometry in assessing plantarflexion
torque following Achilles tendon rupture. Foot Ankle Int.
24:909–915.

Fahs CA, Thiebaud RS, Rossow LM, Loenneke JP, Kim D,
Abe T, Bemben MG. 2014. Effect of lower limb preference

on local muscular and vascular function. Physiol Meas.
35:83–92.

Fortin M, Battie MC. 2012. Quantitative paraspinal muscle
measurements: inter-software reliability and agreement
using OsiriX and ImageJ. Phys Ther. 92:853–864.

Frimel TN, Walter GA, Gibbs JD, Gaidosh GS, Vandenborne
K. 2005. Noninvasive monitoring of muscle damage during
reloading following limb disuse. Muscle Nerve. 32:
605–612.

Fukunaga T, Roy RR, Shellock FG, Hodgson JA, Edgerton
VR. 1996. Specific tension of human plantar flexors and
dorsiflexors. J Appl Physiol. 80:158–165.

Gibson JN, Halliday D, Morrison WL, Stoward PJ, Hornsby
GA, Watt PW, Murdoch G, Rennie MJ. 1987. Decrease in
human quadriceps muscle protein turnover consequent
upon leg immobilization. Clin Sci. 72:503–509.

Glover GH. 1991. Multipoint dixon technique for water and fat
proton and susceptibility imaging. J Magn Reson Imaging.
1:521–530.

Gram M, Vigelsø A, Yokota T, Hansen CN, Helge JW,
Hey-Mogensen M, Dela F. 2014. Two weeks of one-leg
immobilization decreases skeletal muscle respiratory capac-
ity equally in young and elderly men. Exp Gerontol.
58:269–278.

Greenhaff PL. 2006. The molecular physiology of human limb
immobilization and rehabilitation. Exercise Sport Sci Rev.
34:159–163.

Grosset JF, Onambele-Pearson G. 2008. Effect of foot and
ankle immobilization on leg and thigh muscles’ volume
and morphology: a case study using magnetic resonance
imaging. Anat Rec. 291:1673–1683.

Hatakenaka M, Ueda M, Ishigami K, Otsuka M, Masuda K.
2001. Effects of aging on muscle T2 relaxation time:
difference between fast- and slow-twitch muscles. Invest
Radiol. 36:692–698.

Hather BM, Adams GR, Tesch PA, Dudley GA. 1992. Skeletal
muscle responses to lower limb suspension in humans. J
Appl Physiol. 72:1493–1498.

Johnson MA, Polgar J, Weightman D, Appleton D. 1973. Data
on the distribution of fibre types in thirty-six human mus-
cles. An autopsy study. J Neurol Sci. 18:111–129.

Jones SW, Hill RJ, Krasney PA, O’Conner B, Peirce N,
Greenhaff PL. 2004. Disuse atrophy and exercise rehabilita-
tion in humans profoundly affects the expression of genes
associated with the regulation of skeletal muscle mass.
FASEB J. 18:1025–1027.

Kawakami Y, Abe T, Fukunaga T. 1993. Muscle-fiber
pennation angles are greater in hypertrophied than in nor-
mal muscles. J Appl Physiol. 74:2740–2744.

Kearns CF, Isokawa M, Abe T. 2001. Architectural characteris-
tics of dominant leg muscles in junior soccer players. Eur J
Appl Physiol. 85:240–243.

Kuno S, Katsuta S, Akisada M, Anno I, Matsumoto K. 1990.
Effect of strength training on the relationship between mag-
netic resonance relaxation time and muscle fibre composi-
tion. Eur J Appl Physiol Occup Physiol. 61:33–36.

Lanshammar K, Ribom EL. 2011. Differences in muscle
strength in dominant and non-dominant leg in females aged
20–39 years – a population-based study. Phys Ther Sport.
12:76–79.

Li K, Dortch RD, Welch EB, Bryant ND, Buck AK, Towse
TF, Gochberg DF, Does MD, Damon BM, Park JH. 2014.
Multi-parametric MRI characterization of healthy human
thigh muscles at 3.0 T – relaxation, magnetization transfer,

International Biomechanics 111

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
A

be
rd

ee
n]

 a
t 0

3:
29

 1
3 

A
ug

us
t 2

01
5 

http://orcid.org
http://orcid.org
http://orcid.org
http://orcid.org/0000-0001-5920-5842
http://orcid.org
http://orcid.org
http://orcid.org
http://orcid.org/0000-0002-0124-9962
http://orcid.org
http://orcid.org
http://orcid.org
http://orcid.org/0000-0002-5374-624X
http://orcid.org
http://orcid.org
http://orcid.org
http://orcid.org/0000-0002-7403-185X
http://orcid.org
http://orcid.org
http://orcid.org
http://orcid.org/0000-0002-0693-1194


fat/water, and diffusion tensor imaging. NMR Biomed.
27:1070–1084.

Manini TM, Clark BC, Nalls MA, Goodpaster BH, Ploutz-
Snyder LL, Harris TB. 2007. Reduced physical activity
increases intermuscular adipose tissue in healthy young
adults. Am J Clin Nutr. 85:377–384.

Marcus RL, Addison O, Kidde JP, Dibble LE, Lastayo PC.
2010. Skeletal muscle fat infiltration: impact of age, inac-
tivity, and exercise. J Nutr Health Aging. 14:362–366.

Pereira R, Schettino L, Machado M, da Silva PA, Neto OP.
2010. Task failure during standing heel raises is associated
with increased power from 13 to 50 Hz in the activation of
triceps surae. Eur J Appl Physiol. 110:255–265.

Ploutz-Snyder LL, Tesch PA, Crittenden DJ, Dudley GA. 1995.
Effect of unweighting on skeletal muscle use during
exercise. J Appl Physiol. 79:168–175.

Psatha M, Wu Z, Gammie FM, Ratkevicius A, Wackerhage H,
Lee JH, Redpath TW, Gilbert FJ, Ashcroft GP, Meakin JR,
Aspden RM. 2012. A longitudinal MRI study of muscle
atrophy during lower leg immobilization following ankle
fracture. J Magn Reson Imaging. 35:686–695.

Ratkevicius A, Mizuno M, Povilonis E, Quistorff B. 1998. En-
ergy metabolism of the gastrocnemius and soleus muscles
during isometric voluntary and electrically induced contrac-
tions in man. J Physiol. 507:593–602.

Reeder SB, Pineda AR, Wen Z, Shimakawa A, Yu H, Brittain
JH, Gold GE, Beaulieu CH, Pelc NJ. 2005. Iterative
decomposition of water and fat with echo asymmetry and
least-squares estimation (IDEAL): application with fast
spin-echo imaging. Magn Reson Med. 54:636–644.

Segal RL, Song AW. 2005. Nonuniform activity of human calf
muscles during an exercise task. Arch Phys Med Rehabil.
86:2013–2017.

Stevens JE, Pathare NC, Tillman SM, Scarborough MT, Gibbs
CP, Shah P, Jayaraman A, Walter GA, Vandenborne K.
2006. Relative contributions of muscle activation and mus-
cle size to plantarflexor torque during rehabilitation after
immobilization. J Orthop Res. 24:1729–1736.

Stevens JE, Walter GA, Okereke E, Scarborough MT, Esterhai
JL, George SZ, Kelley MJ, Tillman SM, Gibbs JD, Elliott
MA, et al. 2004. Muscle adaptations with immobilization
and rehabilitation after ankle fracture. Med Sci Sports Exer-
cise. 36:1695–1701.

Urso ML, Scrimgeour AG, Chen YW, Thompson PD, Clarkson
PM. 2006. Analysis of human skeletal muscle after 48 h
immobilization reveals alterations in mRNA and protein for
extracellular matrix components. J Appl Physiol.
101:1136–1148.

Vandenborne K, Elliott MA, Walter GA, Abdus S, Okereke E,
Shaffer M, Tahernia D, Esterhai JL. 1998. Longitudinal
study of skeletal muscle adaptations during immobilization
and rehabilitation. Muscle Nerve. 21:1006–1012.

Walker S, Peltonen H, Sautel J, Scaramella C, Kraemer WJ,
Avela J, Hakkinen K. 2014. Neuromuscular adaptations to
constant vs. variable resistance training in older men. Int J
Sports Med. 35:69–74.

Wall BT, Dirks ML, Snijders T, Senden JM, Dolmans J, van
Loon LJ. 2014. Substantial skeletal muscle loss occurs dur-
ing only 5 days of disuse. Acta Physiol. 210:600–611.

Wall BT, Dirks ML, Snijders T, Stephens FB, Senden JM,
Verscheijden ML, van Loon LJ. 2015. Short-term muscle
disuse atrophy is not associated with increased intramuscu-
lar lipid deposition or a decline in the maximal activity of
key mitochondrial enzymes in young and older males. Exp
Gerontol. 61:76–83.

112 M. Psatha et al.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
A

be
rd

ee
n]

 a
t 0

3:
29

 1
3 

A
ug

us
t 2

01
5 


	Abstract
	 Introduction
	 Methods
	 Participants
	 Study design
	 MRI protocols
	 Image analysis
	 Strength training and assessment
	 Statistical analysis

	 Results
	 Discussion
	Acknowledgements
	 Disclosure statement
	Funding
	ORCID
	References



