59 research outputs found

    Global trends in the research of biodegradable biomedical magnesium-based materials: a bibliometric analysis

    Get PDF
    Background: In recent years, there has been a notable surge in the interest surrounding biodegradable materials, particularly in the context of biomedical applications. This has led to a significant rise in the number of research studies focusing on the utilization of biodegradable magnesium-based materials in the field of biomedicine. However, a dearth of comprehensive assessment exists regarding the body of research concerning biodegradable biomedical magnesium-based materials. In this study, a bibliometric approach was used to illustrate the current state of research and global trends pertaining to biodegradable magnesium-based materials for biomedical applications.Methods: We conducted a search of the Web of Science core collection database for the past decade (2013–2022). VOSviewer software and the bibliometric online analysis platform were employed for bibliometric analysis and visualization.Results: Correspondingly, 1267 documents were retrieved. We discovered that the number of papers in the field of degradable biomedical magnesium-based materials research has increased annually. In addition, China and the Chinese Academy of Sciences have published the largest number of papers in the field of biodegradable biomedical magnesium-based materials. Papers related to biodegradable magnesium-based materials for biomedical use were mainly published in acta biomaterialia, materials science and engineering c-materials for biological applications and materials journals. Keyword co-occurrence analysis showed that “corrosion"and “mechanical-properties” appear more frequently. The top 10 common keywords include corrosion, mechanical-properties, microstructure, biocompatibility, behavior, magnesium, magnesium alloys, degradation magnesium alloy, in vitro.Conclusion: Research on biodegradable magnesium-based materials for biomedical use continues to increase steadily. China maintains a leading position in the world, and the Chinese Academy of Sciences represents a notable contribution to the research of biodegradable magnesium-based materials for biomedical use. Subsequently, “corrosion” and “mechanical-properties” were identified as the current research hotspots in the area of biodegradable biomedical magnesium-based materials

    Three-dimensional echocardiographic virtual endoscopy for the diagnosis of congenital heart disease in children

    Get PDF
    Virtual endoscopy (VE) is a new post-processing method that uses volumetric data sets to simulate the tracks of a “conventional” flexible endoscope. However, almost all studies of this method have involved virtual visualizations of the cardiovascular structures applied to computed tomography (CT) and magnetic resonance (MR) datasets. This paper introduces a novel visualization method called the “three-dimensional echocardiographic intracardiac endoscopic simulation system (3DE IESS)”, which uses 3D echocardiographic images in a virtual reality (VR) environment to diagnose congenital heart disease. The aim of this study was to analyze the feasibility of VE in the evaluation of congenital heart disease in children and its accuracy compared with 2DE. Three experienced pediatric cardiologists blinded to the patients’ diagnoses separately reviewed 40 two-dimensional echocardiographic (2DE) datasets and 40 corresponding VE datasets and judged whether abnormal intracardiac anatomy was present in terms of a five-point scale (1 = definitely absent; 2 = probably absent; 3 = cannot be determined; 4 = probably present; and 5 = definitely present). Compared with clinical diagnosis, the diagnostic accuracy of VE was 98.7% for ASD, 92.4% for VSD, 92.6% for TOF, and 94% for DORV, respectively. Diagnostic accuracy of VE was significantly higher than that of 2DE for TOF and DORV except for ASD and VSD. The receiver operating characteristic (ROC) curve for VE was closer to the optimal performance point than was the ROC curve for 2DE. The area under the ROC curve was 0.96 for VE and 0.93 for 2DE. Kappa values (range, 0.73–0.79) for VE and 2DE indicated substantial agreement. 3D echocardiographic VE can enhance our understanding of intracardiac structures and facilitate the evaluation of congenital heart disease

    Bone marrow mesenchymal stem cells inhibit dendritic cells differentiation and maturation by microRNA-23b

    Get PDF
    Correspondence: Lanping Wang ([email protected]) and Bo Xia ([email protected]) Research on regulation and its mechanism of bone marrow mesenchymal stem cells (BMSCs) on dendritic cells (DCs), which is the initiating factor in immune response has applicable clinical value. Although BMSCs have a significant regulatory effect on the maturation of DCs, its molecular mechanism is still unclear. BMSCs and DCs, were co-cultured by different concentration ratios. Flow cytometry was used to detect the expression of DC markers (CD83, CD11c). Quantitative reverse transcription PCR (qRT-PCR) was used to measure the expression of related genes in RNA level. Expression of the target proteins was detected with using Western blot assay. miRNA inhibitor and miRNA mimic were used to suppress and up-regulate the expression of the target gene. In this research, our results demonstrated that BMSCs notably inhibited maturation of DCs in the co-culture system of BMSCs and DCs and confirmed that this inhibition is due to overexpression of miR-23b. Furthermore, this research found that miR-23b overexpression inhibited the expression of p50/p65, thus blocked the activation of the NF-κB pathway. In conclusion, BMSCs affected the activation of NF-κB pathway through miR-23b overexpression resulting in inhibition of the maturation and differentiation of DCs

    Perioperative probiotics attenuates postoperative cognitive dysfunction in elderly patients undergoing hip or knee arthroplasty: A randomized, double-blind, and placebo-controlled trial

    Get PDF
    BackgroundPostoperative cognitive dysfunction (POCD) is a common complication in elderly patients following surgery. The preventive and/or treatment strategies for the incidence remain limited.ObjectiveThis study aimed to investigate the preventive effect of perioperative probiotic treatment on POCD in elderly patients undergoing hip or knee arthroplasty.MethodsAfter obtaining ethical approval and written informed consent, 106 patients (age ≥60 years) were recruited, who scheduled elective hip or knee arthroplasty, from 16 March 2021 to 25 February 2022 for this randomized, double-blind, and placebo-controlled trial. They were randomly assigned with a 1:1 ratio to receive either probiotics or placebo treatment (four capsules, twice/day) from hospital admission until discharge. Cognitive function was assessed with a battery of 11 neuropsychological tests on the admission day and the seventh day after surgery, respectively.ResultsA total of 96 of 106 patients completed the study, and their data were finally analyzed. POCD occurred in 12 (26.7%) of 45 patients in the probiotic group and 29 (56.9%) of 51 patients in the placebo group (relative risk [RR], 0.47 [95% confidence interval [CI], 0.27 to 0.81]; P = 0.003). Among them, mild POCD occurred in 11 (24.4%) in the probiotic group and 24 (47.1%) in the placebo group (RR, 0.52 [95% CI, 0.29 to 0.94]; P = 0.022). No significant difference in severe POCD incidence was found between the two groups (P = 0.209). Compared with the placebo group, the verbal memory domain cognitive function was mainly improved in the probiotic group.ConclusionProbiotics may be used perioperatively to prevent POCD development and improve verbal memory performance in elderly patients receiving hip or knee arthroplasty.Clinical trial registrationwww.chictr.org.cn, identifier: ChiCTR2100045620

    Understanding factors influencing the length of hospital stay among non-severe COVID-19 patients: A retrospective cohort study in a Fangcang shelter hospital.

    Get PDF
    As a novel concept of responding to disease epidemics, Fangcang shelter hospitals were deployed to expand the health system's capacity and provide medical services for non-severe COVID-19 patients during the outbreak in Wuhan. To give insights on patient management within Fangcang hospitals, we conducted a retrospective analysis to: 1) describe the characteristics of the patients admitted to Fangcang hospitals and 2) explore risk factors for longer length of stay (LOS). We enrolled 136 confirmed COVID-19 patients, including asymptomatic patients and those with mild symptoms, who were hospitalized in the Wuti Fangcang Hospital. 58 patients completed the treatment and discharged before 1 March 2020. After describing patients' demographic and clinical characteristics, exposure history, treatment received and time course of the disease, we conducted linear regression analysis to identify factors influencing LOS. We found that patients having fever before admission were hospitalized 3.5 days (95%CI 1.39 to 5.63, p = 0.002) longer than those without fever and that patients having bilateral pneumonia were hospitalized 3.4 days (95%CI 0.49 to 6.25, p = 0.023) longer than those with normal CT scan results. We also found weak evidence suggesting that patients with diabetes were hospitalized 3.2 days longer than those without diabetes (95%CI -0.2 to 6.56, p = 0.065). However, we observed no significant differences in LOS between symptomatic and asymptomatic patients and between patients who received treatment and those without treatment. Longer duration of hospitalization among non-severe COVID-19 patients is associated with having fever, bilateral pneumonia on CT scan and diabetes. However, being asymptomatic and using supportive medications at the early stage of infection do not have significant influences on LOS. Our study is a single-centered study with relatively small sample size. The findings provide evidence for predicting hospital bed demand in a novel response scenario and may help decision-makers in preparing for ramping up the health system capacity

    Freeze-Drying of Mononuclear Cells Derived from Umbilical Cord Blood Followed by Colony Formation

    Get PDF
    BACKGROUND: We recently showed that freeze-dried cells stored for 3 years at room temperature can direct embryonic development following cloning. However, viability, as evaluated by membrane integrity of the cells after freeze-drying, was very low; and it was mainly the DNA integrity that was preserved. In the present study, we improved the cells' viability and functionality after freeze-drying. METHODOLOGY/PRINCIPAL FINDINGS: We optimized the conditions of directional freezing, i.e. interface velocity and cell concentration, and we added the antioxidant EGCG to the freezing solution. The study was performed on mononuclear cells (MNCs) derived from human umbilical cord blood. After freeze-drying, we tested the viability, number of CD34(+)-presenting cells and ability of the rehydrated hematopoietic stem cells to differentiate into different blood cells in culture. The viability of the MNCs after freeze-drying and rehydration with pure water was 88%-91%. The total number of CD34(+)-presenting cells and the number of colonies did not change significantly when evaluated before freezing, after freeze-thawing, and after freeze-drying (5.4 x 10(4)+/-4.7, 3.49 x 10(4)+/-6 and 6.31 x 10(4)+/-12.27 cells, respectively, and 31+/-25.15, 47+/-45.8 and 23.44+/-13.3 colonies, respectively). CONCLUSIONS: This is the first report of nucleated cells which have been dried and then rehydrated with double-distilled water remaining viable, and of hematopoietic stem cells retaining their ability to differentiate into different blood cells
    corecore