7,143 research outputs found
A Review of the Natural History and Laboratory Culture Methods for the Yellow Dung Fly, Scathophaga stercoraria
The yellow dung fly Scathophaga stercoraria (L.) (Diptera: Scathophagidae) is a widespread and locally abundant fly associated with the dung of large mammals, especially farm animals. This species has recently become a standard test organism for evaluating toxic effects of veterinary pharmaceuticals in livestock dung. In this context, a review of its natural history and a general description of the field and laboratory rearing methods of this species are provided here to benefit the scientific community as well as government regulators and applicants of eco-toxicological studies. For guidance, means and ranges are included for all relevant standard life history traits stemming from previously published data on Swiss populations
A systematic review of the sources of dietary salt around the world
Excess salt intake contributes to hypertension and increased cardiovascular disease risk. Efforts to implement effective salt-reduction strategies require accurate data on the sources of salt consumption. We therefore performed a systematic review to identify the sources of dietary salt around the world. We systematically searched peer-reviewed and gray literature databases for studies that quantified discretionary (salt added during cooking or at the table) and nondiscretionary sources of salt and those that provided information about the food groups contributing to dietary salt intake. Exploratory linear regression analysis was also conducted to assess whether the proportion of discretionary salt intake is related to the gross domestic product (GDP) per capita of a country. We identified 80 studies conducted in 34 countries between 1975 and 2018. The majority (n = 44, 55%) collected data on dietary salt sources within the past 10 y and were deemed to have a low or moderate risk of bias (n = 75, 94%). Thirty-two (40%) studies were judged to be nationally representative. Populations in Brazil, China, Costa Rica, Guatemala, India, Japan, Mozambique, and Romania received more than half of their daily salt intake from discretionary sources. A significant inverse correlation between discretionary salt intake and a country's per capita GDP was observed (P < 0.0001), such that for every $10,000 increase in per capita GDP, the amount of salt obtained from discretionary sources was lower by 8.7% (95% CI: 5.1%, 12%). Bread products, cereal and grains, meat products, and dairy products were the major contributors to dietary salt intake in most populations. There is marked variation in discretionary salt use around the world that is highly correlated with the level of economic development. Our findings have important implications for the type of salt-reduction strategy likely to be effective in a country
Automated adaptive analysis of tagged magnetic resonance images of the mouse heart
The full potential of tagged MRI of the mouse heart for non-invasive evaluation of cardiac mechanics in transgenic animals has not been realized due to
excessive user involvement with available image processing algorithms. Therefore, we developed an automated, rapid, high-resolution analysis technique,
called High Density Mapping (HDM), that uses spectral correlation to efficiently quantify regional wall deformation, does not entail tracking of individual
tags, and involves minimal user interaction. HDM analysis distinguishes regional mechanics in healthy and infarcted mice within 2 minutes. This new
method may help promote the practical use of tagged MRI in mice and other species.published_or_final_versio
Effective Capacity in Broadcast Channels with Arbitrary Inputs
We consider a broadcast scenario where one transmitter communicates with two
receivers under quality-of-service constraints. The transmitter initially
employs superposition coding strategies with arbitrarily distributed signals
and sends data to both receivers. Regarding the channel state conditions, the
receivers perform successive interference cancellation to decode their own
data. We express the effective capacity region that provides the maximum
allowable sustainable data arrival rate region at the transmitter buffer or
buffers. Given an average transmission power limit, we provide a two-step
approach to obtain the optimal power allocation policies that maximize the
effective capacity region. Then, we characterize the optimal decoding regions
at the receivers in the space spanned by the channel fading power values. We
finally substantiate our results with numerical presentations.Comment: This paper will appear in 14th International Conference on
Wired&Wireless Internet Communications (WWIC
Stability analysis and quasinormal modes of Reissner Nordstr{\o}m Space-time via Lyapunov exponent
We explicitly derive the proper time principal Lyapunov exponent
() and coordinate time () principal Lyapunov exponent
() for Reissner Nordstr{\o}m (RN) black hole (BH) . We also
compute their ratio. For RN space-time, it is shown that the ratio is
for
time-like circular geodesics and for Schwarzschild BH it is
. We
further show that their ratio may vary from
orbit to orbit. For instance, Schwarzschild BH at innermost stable circular
orbit(ISCO), the ratio is
and at marginally
bound circular orbit (MBCO) the ratio is calculated to be
. Similarly, for extremal RN
BH the ratio at ISCO is
.
We also further analyse the geodesic stability via this exponent. By evaluating
the Lyapunov exponent, it is shown that in the eikonal limit , the real and
imaginary parts of the quasi-normal modes of RN BH is given by the frequency
and instability time scale of the unstable null circular geodesics.Comment: Accepted in Pramana, 07/09/201
RNA polymerase II stalling promotes nucleosome occlusion and pTEFb recruitment to drive immortalization by Epstein-Barr virus
Epstein-Barr virus (EBV) immortalizes resting B-cells and is a key etiologic agent in the development of numerous cancers. The essential EBV-encoded protein EBNA 2 activates the viral C promoter (Cp) producing a message of ~120 kb that is differentially spliced to encode all EBNAs required for immortalization. We have previously shown that EBNA 2-activated transcription is dependent on the activity of the RNA polymerase II (pol II) C-terminal domain (CTD) kinase pTEFb (CDK9/cyclin T1). We now demonstrate that Cp, in contrast to two shorter EBNA 2-activated viral genes (LMP 1 and 2A), displays high levels of promoter-proximally stalled pol II despite being constitutively active. Consistent with pol II stalling, we detect considerable pausing complex (NELF/DSIF) association with Cp. Significantly, we observe substantial Cp-specific pTEFb recruitment that stimulates high-level pol II CTD serine 2 phosphorylation at distal regions (up to +75 kb), promoting elongation. We reveal that Cp-specific pol II accumulation is directed by DNA sequences unfavourable for nucleosome assembly that increase TBP access and pol II recruitment. Stalled pol II then maintains Cp nucleosome depletion. Our data indicate that pTEFb is recruited to Cp by the bromodomain protein Brd4, with polymerase stalling facilitating stable association of pTEFb. The Brd4 inhibitor JQ1 and the pTEFb inhibitors DRB and Flavopiridol significantly reduce Cp, but not LMP1 transcript production indicating that Brd4 and pTEFb are required for Cp transcription. Taken together our data indicate that pol II stalling at Cp promotes transcription of essential immortalizing genes during EBV infection by (i) preventing promoter-proximal nucleosome assembly and ii) necessitating the recruitment of pTEFb thereby maintaining serine 2 CTD phosphorylation at distal regions
Sex, sex chromosomes and gene expression
The X chromosome has fewer testis-specific genes than autosomes in many species. This bias is commonly attributed to X inactivation in spermatogenesis but a recent paper in BMC Biology provides evidence against X inactivation in Drosophila and proposes that somatic tissue- and testis- but not ovary-specific genes tend not to be located on the X chromosome. Here, we discuss possible mechanisms underlying this bias, including sexual antagonism and dosage compensation
Transcriptional and functional profilling of human embryonic stem cell-derived cardiomyocytes
Human embryonic stemcells (hESCs) can serve as a potentially limitless source of cells that may enable regeneration of diseased tissue and organs. Here we investigate the use of human embryonic stemcell-derived cardiomyocytes (hESC-CMs) in promoting recovery from cardiac ischemia reperfusion injury in a mouse model. Using microarrays, we have described the hESC-CM transcriptome within the spectrum of changes that occur between undifferentiated hESCs and fetal heart cells. The hESC-CMs expressed cardiomyocyte genes at levels similar to those found in 20-week fetal heart cells, making this population a good source of potential replacement cells in vivo. Echocardiographic studies showed significant improvement in heart function by 8 weeks after transplantation. Finally, we demonstrate long-term engraftment of hESC-CMs by using molecular imaging to track cellular localization, survival, and proliferation in vivo. Taken together, global gene expression profiling of hESC differentiation enables a systems-based analysis of the biological processes, networks, and genes that drive hESC fate decisions, and studies such as this will serve as the foundation for future clinical applications of stem cell therapies. © 2008 Cao et al.published_or_final_versio
- …