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Abstract
In this paper, we present a preliminary study concerning the dynamic flows in
memristor-based wavelet neural networks with continuous feedback functions and
discontinuous feedback functions in the presence of different memductance
functions. The theoretical studies as well as the computer simulations confirm our
claim. The analysis can characterize the fundamental electrical properties of
memristor devices and provide convenience for applications.

Keywords: memristor; wavelet neural networks; dynamics

1 Introduction
In the recent years, numerous studies focused on the use of the memristor as a discrete el-
ement in a circuit tomodel phenomena or to implement novel functions. Recent advances
in memristor lead to the realization of large-scale artificial neural systems subserving per-
ception, cognition, and learning [–]. Memristor acts as a modulating synapse intercon-
nection between neurons; plasticity is accomplished through adjusting the memristance
via current spikes based on the relative timings of pre-synaptic and postsynaptic neuron
spikes. By usingmemristor as synapse in artificial neural systems, the potential in creating
neuromorphic computing hardware through its variable memristance is unlimited.
As we all know, memristor-based neural networks may be a real breakthrough in the

fields of electronic and circuit design [–]. Dynamic evolution of electronic circuits and
systems is extremely important in systems analysis and integration. For this reason, it is
important to study what dynamics arise in memristive systems and speculate about how
they could be used for meaningful tasks. One question is, the neural network with mem-
ristor bridge synapse appears a plethora of complex nonlinear behaviors [–]. It is hard to
predict the dynamic flows of a specificmemristor-based neural network when it might be-
come detrimental to performance, so a detailed analytical study of the dynamic evolution
is necessary.
Consider the memristive neurodynamic system governed by the following equations

ẋi(t) = –xi(t) +
n∑

j=,j �=i
wij

(
xi(t)

)
fj
(
xj(t)

)
+ ui, i = , , . . . ,n, ()
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where xi(t) is the voltage of the capacitor Ci, ui denotes external input, fj(·) is wavelet
feedback function, wij(xi(t)) represents memristor-based weights, and

wij
(
xi(t)

)
=
Wij

Ci
× sginij, sginij =

⎧⎨⎩, i �= j,

–, i = j,

in whichWij denotes the memductance of memristor Rij. And Rij represents the memris-
tor between the feedback function fi(xi(t)) and xi(t).
Combining the physical structure of a memristor device, then one can see that

Wij =
dqij

dσij
, ()

where qij and σij denote charge andmagnetic flux corresponding tomemristorRij, respec-
tively.
Research shows the pinched hysteresis loops are the fingerprint of memristive devices

[, ]. Under different pinched hysteresis loops, the evolutionary tendency or process of
memristive systems evolves into different forms. It is generally known that the pinched
hysteresis loop is due to the nonlinearity of memductance function. As two typical mem-
ductance functions, in this paper, we discuss the following two cases.
Case : The memductance functionWij is given by

Wij =

⎧⎨⎩aij, |σij| < �ij,

bij, |σij| > �ij,
()

where aij, bij and �ij >  are constants, i, j = , , . . . ,n.
Case : The memductance functionWij is given by

Wij = cij + dijσ 
ij , ()

where cij and dij are constants, i, j = , , . . . ,n.
According to the features of memristor given in case  and case , the following two

cases can happen.
Case ′: In case ,

wij
(
xi(t)

)
=

⎧⎨⎩ŵij, sginij
dfj(xj(t))

dt – dxi(t)
dt ≤ ,

w̌ij, sginij
dfj(xj(t))

dt – dxi(t)
dt > 

()

for i, j = , , . . . ,n, where ŵij and w̌ij are constants.
Case ′: In case ,

wij
(
xi(t)

)
is a continuous function, and �ij ≤ wij

(
xi(t)

) ≤ �ij ()

for i, j = , , . . . ,n, where �ij and �ij are constants.
Clearly, the memristive neural network () with different memductance functions is a

state-dependent switched system or a state-dependent continuous system, which is the
generalization of those for conventional neural networks.
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Several novel research results on conventional nonlinear neural networks have been re-
ported, see [–]. Whereas in memristor-based neural networks, to study the dynamic
flows of these systems, the classical approach on nonlinear systemic theory is invalid; since
it consists of toomany subsystems, it is too difficult to do so. It is also important to develop
effective methods to process these issues concurrently with the development of applica-
tions, in order to allow the memristor-based neural networks to be readily used as the
alternate approaches to the traditional techniques or as components of integrated sys-
tems.
In this paper, themain purpose is tomake the attempt to deal with the dynamic flows for

a class of memristor-based wavelet neural networks with continuous feedback functions
and discontinuous feedback functions in the presence of different memductance func-
tions. Meanwhile, the theoretical investigation would help to design efficient memristor-
based neuromorphic circuits and study other memristor-based complex systems. Note
that the structure of wavelet neural networks is totally different from many traditional
neural networks. Hence, the existing results can not be directly applied to the wavelet
neural networks. In addition, we give some sufficient conditions on dynamic evolution.
All of these conditions are very easy to be verified.
Throughout this paper, solutions of all the systems considered in the following are

intended in the Filippov’s sense. [·, ·] represents the interval. co{�̃, �̂} denotes closure
of the convex hull of �n generated by real numbers �̃ and �̂. Let wij = max{ŵij, w̌ij},
wij =min{ŵij, w̌ij}, w̃ij =max{|ŵij|, |w̌ij|}, �̃ij =max{|�ij|, |�ij|}, for i, j = , , . . . ,n.
The remaining part of this paper is organized as follows. The main results are stated

in Sections  and . In Section , two illustrative examples are provided with simulation
results. Finally, concluding remarks are given in Section .

2 Memristor-based wavelet neural networks (1) in case 1′

In this section, we discuss the memristor-based wavelet neural networks () with contin-
uous feedback functions and discontinuous feedback functions in case ′.
Obviously, the memristor-based wavelet neural network () in case ′ is a state-

dependent switched system, which has nonsmooth dynamics.

2.1 Mexican-hat-type feedback functions
As the most typical representative of continuous feedback functions, Mexican-hat-type
feedback functions possess a unique wavelet structure [].
A solution x(t) = (x(t),x(t), . . . ,xn(t))T (in the sense of Filippov) of system () with initial

condition x() = x, is absolutely continuous on any compact interval of [,+∞), and

ẋi(t) ∈ –xi(t) +
n∑

j=,j �=i
co{ŵij, w̌ij}fj

(
xj(t)

)
+ ui, i = , , . . . ,n. ()

In fact, it is easy to find that in case ′, for i = , , . . . ,n,

co

{
–xi(t) +

n∑
j=,j �=i

wij
(
xi(t)

)
fj
(
xj(t)

)
+ ui

}
= –xi(t) +

n∑
j=,j �=i

co{ŵij, w̌ij}fj
(
xj(t)

)
+ ui.
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Figure 1 Mexican-hat-type feedback function (8).

Obviously, for i, j = , , . . . ,n,

co{ŵij, w̌ij} = [wij,wij].

Consider system () with a class of Mexican-hat-type feedback functions defined as

fi(r) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

–, –∞ < r < –,

r, – ≤ r ≤ ,

–r + ,  < r ≤ ,

–,  < r < +∞.

()

Figure  shows the configuration of ().
Define three index subsets as follows:

N =

{
i : ui < – –

n∑
j=,j �=i

w̃ij

}
,

N =

{
i :  +

n∑
j=,j �=i

w̃ij < ui <  –
n∑

j=,j �=i
w̃ij

}
,

N =

{
i : ui >  +

n∑
j=,j �=i

w̃ij

}
.

Theorem  All the state components xi(t) of system () with Mexican-hat-type feedback
function () in case ′, i ∈N, will flow to the interval (–∞, –] when t → +∞.

Proof We deliver it in the following two cases due to the different location of xi().
Case A xi() ∈ (–∞, –].
In this case, if there exists some t̃ ≥  such that xi(t̃) = –, while xi(t) < – for t < t̃, then

from (),

dxi(t)
dt

∣∣∣∣
t=t̃

≤  +
n∑

j=,j �=i
w̃ij + ui < .
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Thus, xi(t) would never get out of (–∞, –]. Similarly, we can also get that once xi(T ) ∈
(–∞, –] for some T ≥ , then xi(t) would stay in (–∞, –] for all t ≥ T .
Case B xi() ∈ (–,+∞).
In this case, we claim that xi(t) wouldmonotonously decrease until it reaches the interval

(–∞, –] in some finite time t̆ > , i.e., xi(t̆) ≤ –.
As a matter of fact, when xi(t) ∈ (, +∞), from (),

ẋi(t) ≤ – +
n∑

j=,j �=i
w̃ij + ui <  +

n∑
j=,j �=i

w̃ij + ui < ,

when xi(t) ∈ (, ], from (),

ẋi(t) ≤ – +
n∑

j=,j �=i
w̃ij + ui <  +

n∑
j=,j �=i

w̃ij + ui < ,

when xi(t) ∈ (–, ], from (),

ẋi(t) ≤  +
n∑

j=,j �=i
w̃ij + ui < .

To sum up, wherever the initial state xi() is located in, xi(t) would flow to and enter
the interval (–∞, –]. Combining with Case A, xi(t) would eventually stay in this interval
(–∞, –]. �

Theorem  All the state components xi(t) of system () with Mexican-hat-type feedback
function () in case ′, i ∈N, will flow to the interval [, ] when t → +∞.

Proof According to the different location of xi(), we deduce it in three cases.
Case A xi() ∈ [, ].
In this case, if there exists some t̃ ≥  such that xi(t̃) = , while  < xi(t) ≤  for t < t̃, then

from (),

dxi(t)
dt

∣∣∣∣
t=t̃

≥ – –
n∑

j=,j �=i
w̃ij + ui > .

Analogously, if there exists some t̆ ≥  such that xi(t̆) = , while  ≤ xi(t) <  for t < t̆,
then from (),

dxi(t)
dt

∣∣∣∣
t=t̃

≤ – +
n∑

j=,j �=i
w̃ij + ui < .

Thus, xi(t) would never get out of [, ]. Similarly, we can also get that once xi(T ) ∈ [, ]
for some T ≥ , then xi(t) would stay in [, ] for all t ≥ T .
Case B xi() ∈ (–∞, ).
When xi(t) ∈ (–∞, –], from (),

ẋi(t) ≥  –
n∑

j=,j �=i
w̃ij + ui >  –

n∑
j=,j �=i

w̃ij +  +
n∑

j=,j �=i
w̃ij =  > ,

http://www.advancesindifferenceequations.com/content/2013/1/258


Wu et al. Advances in Difference Equations 2013, 2013:258 Page 6 of 14
http://www.advancesindifferenceequations.com/content/2013/1/258

when xi(t) ∈ (–, ), from (),

ẋi(t) ≥ – –
n∑

j=,j �=i
w̃ij + ui > .

Thus, in this case, xi(t) would monotonously increase until it reaches [, ].
Case C xi() ∈ (, +∞).
When xi(t) ∈ (, +∞), from (),

ẋi(t) < – +
n∑

j=,j �=i
w̃ij + ui < .

Therefore, xi(t) would monotonously decrease until it enters the interval [, ].
To sum up, wherever the initial state xi() is located in, xi(t) would flow to and enter the

interval [, ]. �

Theorem  All the state components xi(t) of system () with Mexican-hat-type feedback
function () in case ′, i ∈N, will flow to the interval [, +∞) when t → +∞.

Proof Deliver it in the following two cases.
Case A xi() ∈ [, +∞).
In this case, if there exists some t̃ ≥  such that xi(t̃) = , while xi(t) >  for t < t̃, then

from (),

dxi(t)
dt

∣∣∣∣
t=t̃

≥ – –
n∑

j=,j �=i
w̃ij + ui > .

So, xi(t) would never get out of [, +∞). Similarly, we can also get that, once xi(T ) ∈
[, +∞) for some T ≥ , then xi(t) would stay in [,+∞) for all t ≥ T .
Case B xi() ∈ (–∞, ).
In this case, we claim that xi(t) wouldmonotonously increase until it reaches the interval

[, +∞).
As a matter of fact, when xi(t) ∈ (–∞, –], from (),

ẋi(t) ≥  –
n∑

j=,j �=i
w̃ij + ui >  –

n∑
j=,j �=i

w̃ij +  +
n∑

j=,j �=i
w̃ij =  > ,

when xi(t) ∈ (–, ], from (),

ẋi(t) ≥ – –
n∑

j=,j �=i
w̃ij + ui > – –

n∑
j=,j �=i

w̃ij +  +
n∑

j=,j �=i
w̃ij =  > ,

when xi(t) ∈ (, ), from (),

ẋi(t) ≥ – –
n∑

j=,j �=i
w̃ij + ui > .

Therefore, in this case, xi(t) would monotonously increase until it reaches [,+∞).

http://www.advancesindifferenceequations.com/content/2013/1/258
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In summary, wherever the initial state xi() is located in, xi(t) would flow to and enter
the interval [, +∞). �

Remark  In Theorems -, a core idea is to employ nonsmooth analysis within mathe-
matical framework of the Filippov solution. Generally speaking, nonsmooth analysis is
suitable for analyzing nonsmooth dynamics of hybrid systems. Meanwhile, it is worth
observing that the memristor-based wavelet neural network model in case ′ is a state-
dependent nonlinear switching dynamical system, which extends many of the existing
neural networks. Therefore, the obtained results in this paper can be used in the wider
scope.

2.2 Piecewise constant feedback functions
As a representative of discontinuous feedback functions, piecewise constant feedback
functions have an important position among typical wavelet neural networks [, ].
Consider system () with a class of piecewise constant feedback functions defined as

fi(r) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

–, –∞ < r < –,

, – ≤ r ≤ ,

,  < r ≤ ,

–,  < r < +∞.

()

Figure  shows the configuration of ().

Corollary  All the state components xi(t) of system () with piecewise constant feedback
function () in case ′, i ∈N, will flow to the interval (–∞, –] when t → +∞.

Corollary  All the state components xi(t) of system () with piecewise constant feedback
function () in case ′, i ∈N, will flow to the interval [, ] when t → +∞.

Corollary  All the state components xi(t) of system () with piecewise constant feedback
function () in case ′, i ∈N, will flow to the interval [, +∞) when t → +∞.

Corollaries - can be proved using standard arguments as Theorems -.

Figure 2 Piecewise constant feedback function (9).

http://www.advancesindifferenceequations.com/content/2013/1/258
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Remark  Theorems - and Corollaries - are obtained based on Mexican-hat-type
feedback function () and piecewise constant feedback function (). In fact, even if mem-
ristive neurodynamic system () appears as other types of Mexican-hat-type feedback
functions and piecewise constant feedback functions, the main results in this paper still
can be made some parallel promotions.

3 Memristor-based wavelet neural networks (1) in case 2′

In this section, we investigate the memristor-based wavelet neural networks () with con-
tinuous feedback functions and discontinuous feedback functions in case ′.
Obviously, the memristor-based wavelet neural network () in case ′ is a state-

dependent continuous system.
By (), it is easy to know that for i = , , . . . ,n,

ẋi(t) ≤ –xi(t) +
n∑

j=,j �=i
�̃ij

∣∣fj(xj(t))∣∣ + ui(t). ()

Define three index subsets as follows:

Ñ =

{
i : ui < – –

n∑
j=,j �=i

�̃ij

}
,

Ñ =

{
i :  +

n∑
j=,j �=i

�̃ij < ui <  –
n∑

j=,j �=i
�̃ij

}
,

Ñ =

{
i : ui >  +

n∑
j=,j �=i

�̃ij

}
.

Theorem  All the state components xi(t) of system () with Mexican-hat-type feedback
function () in case ′, i ∈ Ñ, will flow to the interval (–∞, –] when t → +∞.

Proof We deliver it in the following two cases due to the different location of xi().
Case A xi() ∈ (–∞, –].
In this case, if there exists some t̃ ≥  such that xi(t̃) = –, while xi(t) < – for t < t̃, then

from (),

dxi(t)
dt

∣∣∣∣
t=t̃

≤  +
n∑

j=,j �=i
�̃ij + ui < .

Thus, xi(t) would never get out of (–∞, –]. Similarly, we can also get that once xi(T ) ∈
(–∞, –] for some T ≥ , then xi(t) would stay in (–∞, –] for all t ≥ T .
Case B xi() ∈ (–,+∞).
In this case, we claim that xi(t) wouldmonotonously decrease until it reaches the interval

(–∞, –] in some finite time t̆ > , i.e., xi(t̆) ≤ –.
As a matter of fact, when xi(t) ∈ (, +∞), from (),

ẋi(t) ≤ – +
n∑

j=,j �=i
�̃ij + ui <  +

n∑
j=,j �=i

�̃ij + ui < ,

http://www.advancesindifferenceequations.com/content/2013/1/258
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when xi(t) ∈ (, ], from (),

ẋi(t) ≤ – +
n∑

j=,j �=i
�̃ij + ui <  +

n∑
j=,j �=i

�̃ij + ui < ,

when xi(t) ∈ (–, ], from (),

ẋi(t) ≤  +
n∑

j=,j �=i
�̃ij + ui < .

To sum up, wherever the initial state xi() is located in, xi(t) would flow to and enter
the interval (–∞, –]. Combining with Case A, xi(t) would eventually stay in this interval
(–∞, –]. �

Theorem  All the state components xi(t) of system () with Mexican-hat-type feedback
function () in case ′, i ∈ Ñ, will flow to the interval [, ] when t → +∞.

Proof According to the different location of xi(), we deduce it in three cases.
Case A xi() ∈ [, ].
In this case, if there exists some t̃ ≥  such that xi(t̃) = , while  < xi(t) ≤  for t < t̃, then

from (),

dxi(t)
dt

∣∣∣∣
t=t̃

≥ – –
n∑

j=,j �=i
�̃ij + ui > .

Analogously, if there exists some t̆ ≥  such that xi(t̆) = , while  ≤ xi(t) <  for t < t̆,
then from (),

dxi(t)
dt

∣∣∣∣
t=t̃

≤ – +
n∑

j=,j �=i
�̃ij + ui < .

Thus, xi(t) would never get out of [, ]. Similarly, we can also get that once xi(T ) ∈ [, ]
for some T ≥ , then xi(t) would stay in [, ] for all t ≥ T .
Case B xi() ∈ (–∞, ).
When xi(t) ∈ (–∞, –], from (),

ẋi(t) ≥  –
n∑

j=,j �=i
�̃ij + ui >  –

n∑
j=,j �=i

�̃ij +  +
n∑

j=,j �=i
�̃ij =  > ,

when xi(t) ∈ (–, ), from (),

ẋi(t) ≥ – –
n∑

j=,j �=i
�̃ij + ui > .

Thus, in this case, xi(t) would monotonously increase until it reaches [, ].

http://www.advancesindifferenceequations.com/content/2013/1/258
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Case C xi() ∈ (, +∞).
When xi(t) ∈ (, +∞), from (),

ẋi(t) < – +
n∑

j=,j �=i
�̃ij + ui < .

Therefore, xi(t) would monotonously decrease until it enters the interval [, ].
To sum up, wherever the initial state xi() is located in, xi(t) would flow to and enter the

interval [, ]. �

Theorem  All the state components xi(t) of system () with Mexican-hat-type feedback
function () in case ′, i ∈ Ñ, will flow to the interval [, +∞) when t → +∞.

Proof Deliver it in the following two cases.
Case A xi() ∈ [, +∞).
In this case, if there exists some t̃ ≥  such that xi(t̃) = , while xi(t) >  for t < t̃, then

from (),

dxi(t)
dt

∣∣∣∣
t=t̃

≥ – –
n∑

j=,j �=i
�̃ij + ui > .

So xi(t) would never get out of [, +∞). Similarly, we can also get that once xi(T ) ∈ [, +∞)
for some T ≥ , then xi(t) would stay in [,+∞) for all t ≥ T .
Case B xi() ∈ (–∞, ).
In this case, we claim that xi(t) wouldmonotonously increase until it reaches the interval

[, +∞).
As a matter of fact, when xi(t) ∈ (–∞, –], from (),

ẋi(t) ≥  –
n∑

j=,j �=i
�̃ij + ui >  –

n∑
j=,j �=i

�̃ij +  +
n∑

j=,j �=i
�̃ij =  > ,

when xi(t) ∈ (–, ], from (),

ẋi(t) ≥ – –
n∑

j=,j �=i
�̃ij + ui > – –

n∑
j=,j �=i

�̃ij +  +
n∑

j=,j �=i
�̃ij =  > ,

when xi(t) ∈ (, ), from (),

ẋi(t) ≥ – –
n∑

j=,j �=i
�̃ij + ui > .

Therefore, in this case, xi(t) would monotonously increase until it reaches [,+∞).
In summary, wherever the initial state xi() is located in, xi(t) would flow to and enter

the interval [, +∞). �

Corollary  All the state components xi(t) of system () with piecewise constant feedback
function () in case ′, i ∈ Ñ, will flow to the interval (–∞, –] when t → +∞.

http://www.advancesindifferenceequations.com/content/2013/1/258
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Corollary  All the state components xi(t) of system () with piecewise constant feedback
function () in case ′, i ∈ Ñ, will flow to the interval [, ] when t → +∞.

Corollary  All the state components xi(t) of system () with piecewise constant feedback
function () in case ′, i ∈ Ñ, will flow to the interval [, +∞) when t → +∞.

Corollaries - can be proved using standard arguments as Theorems -.

Remark  It is worth noting that memristive neural networks may display different
types of dynamic features in the presence of different memductance functions, i.e., state-
dependent switched system and state-dependent continuous system. Although the ana-
lytical method is based on two different theory architectures, the proposed criteria is very
similar. The unified form of criterion is an effective methodology of enhancing the pro-
posed criterion to be easily applied to different situations.

4 Illustrative examples
In this section, two examples are given to illustrate our results. Simulation results show
that the obtained conclusions are valid.

Example  Consider the two-dimensional memristive neurodynamic system as follows:⎧⎨⎩ẋ(t) = –x(t) +w(x(t))f(x(t)) + u,

ẋ(t) = –x(t) +w(x(t))f(x(t)) + u,
()

where

w
(
x(t)

)
=

⎧⎨⎩., df(x(t))
dt – dx(t)

dt ≤ ,

., df(x(t))
dt – dx(t)

dt > ,

w
(
x(t)

)
=

⎧⎨⎩., df(x(t))
dt – dx(t)

dt ≤ ,

., df(x(t))
dt – dx(t)

dt > .

Simulation results are described in Figures  and  when u = –, u = , where the tra-
jectories of system () with Mexican-hat-type feedback function () and piecewise con-
stant feedback function () under different initial values are depicted. According to Theo-
rems  and , Corollaries  and , the results of theoretical calculations are consistent with
the experiments.

Example  Consider a two-dimensional memristive neurodynamic system described by⎧⎨⎩ẋ(t) = –x(t) + . sin(x(t))f(x(t)) + u,

ẋ(t) = –x(t) + . cos(x(t))f(x(t)) + u.
()

Simulation results are described in Figures  and  when u = –, u = , where the tra-
jectories of system () with Mexican-hat-type feedback function () and piecewise con-
stant feedback function () under different initial values are showed. According to Theo-
rem  and Corollary , the experiments perfectly match the theoretical results.

http://www.advancesindifferenceequations.com/content/2013/1/258


Wu et al. Advances in Difference Equations 2013, 2013:258 Page 12 of 14
http://www.advancesindifferenceequations.com/content/2013/1/258

Figure 3 Transient behaviors of system (11) with Mexican-hat-type feedback function (8) under
different initial values.

Figure 4 Transient behaviors of system (11) with piecewise constant feedback function (9) under
different initial values.

5 Concluding remarks
Rhythmicity represents one of most striking manifestations of dynamic behaviors in bi-
ological systems. Memristor-based neural networks have been shown to be capable of
understanding of neural processes using memory devices. In this article, we give condi-
tions to allow a dynamic orbit of memristor-based wavelet neural networks located in the
designated region. The theoretical results are supplemented by simulation results in two
illustrative examples.
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Figure 5 Transient behaviors of system (12) with Mexican-hat-type feedback function (8) under
different initial values.

Figure 6 Transient behaviors of system (12) with piecewise constant feedback function (9) under
different initial values.
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