1,676 research outputs found

    PIN69 Cost Utility Analysis of 13-Valent Pneumococcal Conjugate Vaccine in Malaysia

    Get PDF
    Farrando Sicilia, Jordi; Lecea, Ignasi de; Fuente Fuente, Carlos; Ribas Seix, Anna; Masana Padrós, Judit; Delgado, José L

    On static spherically symmetric solutions of the vacuum Brans-Dicke theory

    Full text link
    It is shown that among the four classes of the static spherically symmetric solution of the vacuum Brans-Dicke theory of gravity only two are really independent. Further by matching exterior and interior (due to physically reasonable spherically symmetric matter source) scalar fields it is found that only Brans class I solution with certain restriction on solution parameters may represent exterior metric for a nonsingular massive object. The physical viability of the black hole nature of the solution is investigated. It is concluded that no physical black hole solution different from the Schwarzschild black hole is available in the Brans-Dicke theory.Comment: 15 pages, To be published in Gen. Rel. and Grav, typos in references correcte

    Equilibrium crystal shapes in the Potts model

    Full text link
    The three-dimensional qq-state Potts model, forced into coexistence by fixing the density of one state, is studied for q=2q=2, 3, 4, and 6. As a function of temperature and number of states, we studied the resulting equilibrium droplet shapes. A theoretical discussion is given of the interface properties at large values of qq. We found a roughening transition for each of the numbers of states we studied, at temperatures that decrease with increasing qq, but increase when measured as a fraction of the melting temperature. We also found equilibrium shapes closely approaching a sphere near the melting point, even though the three-dimensional Potts model with three or more states does not have a phase transition with a diverging length scale at the melting point.Comment: 6 pages, 3 figures, submitted to PR

    Review of Rare and Forbidden τ\tau Decays

    Full text link
    This is a review of rare and forbidden decays of the τ\tau lepton. For the rare decays, this includes new results on the chiral anomaly decay \taupietapio, new upper limits on the second-class-current decay \taupieta, and the observations of the Cabibbo-suppressed decay \tauketa and the internal conversion decay \taueee. For the forbidden decays, there are new upper limits on the radiative decays \tauegamma and \taumugamma. Some forbidden decays which have not been previously searched for are also suggested

    Defect and anisotropic gap induced quasi-one-dimensional modulation of local density of states in YBa2_2Cu3_3O7δ_{7-\delta}

    Full text link
    Motivated by recent angle-resolved photoemission spectroscopy (ARPES) measurement that superconducting YBa2_2Cu3_3O7δ_{7-\delta} (YBCO) exhibits a dx2y2+sd_{x^2-y^2} + s-symmetry gap, we show possible quasi-one-dimensional modulations of local density of states in YBCO. These aniostropic gap and defect induced stripe structures are most conspicuous at higher biases and arise due to the nesting effect associated with a Fermi liquid. Observation of these spectra by scanning tunneling microscopy (STM) would unify the picture among STM, ARPES, and inelastic neutron scattering for YBCO.Comment: 4 pages, 4 figure

    Growth factor in f(T) gravity

    Full text link
    We derive the evolution equation of growth factor for the matter over-dense perturbation in f(T)f(T) gravity. For instance, we investigate its behavior in power law model at small redshift and compare it to the prediction of Λ\LambdaCDM and dark energy with the same equation of state in the framework of Einstein general relativity. We find that the perturbation in f(T)f(T) gravity grows slower than that in Einstein general relativity if \p f/\p T>0 due to the effectively weakened gravity.Comment: 15 pages,1 figure; v2,typos corrected; v3, discussions added, accepted by JCA

    Complete population transfer in a degenerate 3-level atom

    Full text link
    We find conditions required to achieve complete population transfer, via coherent population trapping, from an initial state to a designated final state at a designated time in a degenerate 3-level atom, where transitions are caused by an external interaction. Complete population transfer from an initially occupied state 1 to a designated state 2 occurs under two conditions. First, there is a constraint on the ratios of the transition matrix elements of the external interaction. Second, there is a constraint on the action integral over the interaction, or "area", corresponding to the phase shift induced by the external interaction. Both conditions may be expressed in terms of simple odd integers.Comment: 22 pages, 4 figure

    Reconstruction of Objects by Direct Demodulation

    Full text link
    High resolution reconstruction of complicated objects from incomplete and noisy data can be achieved by solving modulation equations iteratively under physical constraints. This direct demodulation method is a powerful technique for dealing with inverse problem in general case. Spectral and image restorations and computerized tomography are only particular cases of general demodulation. It is possible to reconstruct an object in higher dimensional space from observations by a simple lower dimensional instrument through direct demodulation. Our simulations show that wide field and high resolution images of space hard X-rays and soft gamma rays can be obtained by a collimated non-position-sensitive detector without coded aperture masks.Comment: 11 pages, 6 figure

    Electronic Structure of the Complex Hydride NaAlH4

    Full text link
    Density functional calculations of the electronic structure of the complex hydride NaAlH4 and the reference systems NaH and AlH3 are reported. We find a substantially ionic electronic structure for NaAlH4, which emphasizes the importance of solid state effects in this material. The relaxed hydrogen positions in NaAlH4 are in good agreement with recent experiment. The electronic structure of AlH3 is also ionic. Implications for the binding of complex hydrides are discussed.Comment: 4 pages, 5 figure

    Nanofabrication by magnetic focusing of supersonic beams

    Full text link
    We present a new method for nanoscale atom lithography. We propose the use of a supersonic atomic beam, which provides an extremely high-brightness and cold source of fast atoms. The atoms are to be focused onto a substrate using a thin magnetic film, into which apertures with widths on the order of 100 nm have been etched. Focused spot sizes near or below 10 nm, with focal lengths on the order of 10 microns, are predicted. This scheme is applicable both to precision patterning of surfaces with metastable atomic beams and to direct deposition of material.Comment: 4 pages, 3 figure
    corecore