286 research outputs found

    A Novel Collagen Extraction Method Based on Microwave Irradiation

    Get PDF
    Content: Microwave was used as a thermal source to extract collagen acid from the cattle hide in the present work. The effects of microwave on collagen extraction yields were studied under different microwave temperatures, time and hide-liquid ratio. The optimal extraction process was obtained by an orthogonal experiment, and the composition, structure and properties of the extracted collagen were characterized by amino acid analysis, SDS-PAGE, FTIR, UV-Vis, CD, FL, and VP-DSC. The results showed that the extraction rate of collagen was positively correlated with temperature, time and hide-liquid ratio. Under the condition of 35 °C, 6 h and 1:30 of solid-liquid ratio, the extraction proportion of collagen extracted under microwave was the highest, reaching to 13.40 %. The extracted collagen was identified as type I collagen by Amino acid analysis, and the graphic pattern of SDS-PAGE, FTIR and UV-Vis showed that the extracted collagen was similar to the standard type I collagen. Also, the results suggest that the triple helical structure exists still in the extracted collagen. The transition from triple helix to random coil of the extracted collagen was 41 ℃. These results provide a scientific basis for microwave technology for the extraction of collagen. Take-Away: The results showed that the extraction rate of collagen was positively correlated with temperature, time and hide-liquid ratio. Under the condition of 35 °C, 6 h and 1:30 of solid-liquid ratio, the extraction proportion of collagen extracted under microwave was the highest, reaching to 13.40 %. The extracted collagen was identified as type I collagen by Amino acid analysis, and the graphic pattern of SDS-PAGE, FTIR and UV-Vis showed that the extracted collagen was similar to the standard type I collagen. Also, the results suggest that the triple helical structure exists still in the extracted collagen. The transition from triple helix to random coil of the extracted collagen was 41 ℃. These results provide a scientific basis for microwave technology for the extraction of collagen

    Coded Caching Schemes for Two-dimensional Caching-aided Ultra-Dense Networks

    Full text link
    Coded caching technique is an efficient approach to reduce the transmission load in networks and has been studied in heterogeneous network settings in recent years. In this paper, we consider a new widespread caching system called (K1,K2,U,r,M,N)(K_1,K_2,U,r,M,N) two-dimensional (2D) caching-aided ultra-dense network (UDN) with a server containing NN files, K1K2K_1K_2 cache nodes arranged neatly on a grid with K1K_1 rows and K2K_2 columns, and UU cache-less users randomly distributed around cache nodes. Each cache node can cache at most MNM\leq N files and has a certain service region by Euclidean distance. The server connects to users through an error-free shared link and the users in the service region of a cache node can freely retrieve all cached contents of this cache node. We aim to design a coded caching scheme for 2D caching-aided UDN systems to reduce the transmission load in the worst case while meeting all possible users' demands. First, we divide all possible users into four classes according to their geographical locations. Then our first order optimal scheme is proposed based on the Maddah-Ali and Niesen scheme. Furthermore, by compressing the transmitted signals of our first scheme based on Maximum Distance Separable (MDS) code, we obtain an improved order optimal scheme with a smaller transmission load.Comment: 44 page

    Numerical modeling of the electron beam welding and its experimental validation

    Get PDF
    Electron Beam Welding (EBW) is a highly efficient and precise welding method increasingly used within the manufacturing chain and of growing importance in different industrial environments such as the aeronautical and aerospace sectors. This is because, compared to other welding processes, EBW induces lower distortions and residual stresses due to the lower and more focused heat input along the welding line. This work describes the formulation adopted for the numerical simulation of the EBW process as well as the experimental work carried out to calibrate and validate it. The numerical simulation of EBW involves the interaction of thermal, mechanical and metallurgical phenomena. For this reason, in this work the numerical framework couples the heat transfer process to the stress analysis to maximize accuracy. An in-house multi-physics FE software is used to deal with the numerical simulation. The definition of an ad hoc moving heat source is proposed to simulate the EB power surface distribution and the corresponding absorption within the work-piece thickness. Both heat conduction and heat radiation models are considered to dissipate the heat through the boundaries of the component. The material behavior is characterized by an apropos thermo-elasto-viscoplastic constitutive model. Titanium-alloy Ti6A14V is the target material of this work. From the experimental side, the EB welding machine, the vacuum chamber characteristics and the corresponding operative setting are detailed. Finally, the available facilities to record the temperature evolution at different thermo-couple locations as well as to measure both distortions and residual stresses are described. Numerical results are compared with the experimental evidence.Peer ReviewedPostprint (author's final draft

    Ti (III)-tannin combination tanning technology based on microwave irradiation

    Get PDF
    Content: Microwave is a fast, efficient and energy-saving thermal resource, hence an attempt has been made for applying this technology in the combination tanning using titanium (III) and tannin extracts. In this work, the microwave effects on the complex reaction of Ti (III) with tannin extracts and leather products properties were investigated. The precipitation condition was used to characterize the complexation degree between Ti (III) and tannin extracts. And the shrinkage temperature, tear strength, SEM, DSC, TG, FT-IR, and histological structure were used to characterize the changes in the physical and chemical properties of the combined tanned leather. Take-Away: The results showed that microwave irradiation can accelerate the complex reaction of Ti (III) with tannin extracts. At the room temperature, the mixture of tannin and titanous sulphate kept stable at pH 3-4. In addition, microwave could increase the shrinkage temperature, tear strength, thermal stability, and fibrage of Ti (III)-tannin tanned leather, and it would not change the combination mode of the skins with tanning agents as well as the hierarchical structure of collagen. Therefore, these results inferred that microwave could promote the reaction between Ti (III) and tannins and the combination of tannins with collagen, which may provide a theoretical basis for the application of microwave in Ti (III)-tannin combination tanning technology

    Transcriptome profiling of the floating-leaved aquatic plant Nymphoides peltata in response to flooding stress

    Get PDF
    This table provides all differentially expressed genes meeting the threshold (FDR ≤ 0.01) and the GO terms that the differentially expressed genes were enriched. (XLS 207 kb

    A Novel Model of Atherosclerosis in Rabbits Using Injury to Arterial Walls Induced by Ferric Chloride as Evaluated by Optical Coherence Tomography as well as Intravascular Ultrasound and Histology

    Get PDF
    This study aim was to develop a new model of atherosclerosis by FeCl3-induced injury to right common carotid arteries (CCAs) of rabbits. Right CCAs were induced in male New Zealand White rabbits (n = 15) by combination of a cholesterol-rich diet and FeCl3-induced injury to arterial walls. The right and left CCAs were evaluated by histology and in vivo intravascular ultrasound (IVUS) and optical coherence tomography (OCT) examinations of 24 hours (n = 3), 8 weeks (n = 6), and 12 weeks (n = 6) after injury. Each right CCA of the rabbits showed extensive white-yellow plaques. At eight and 12 weeks after injury, IVUS, OCT, and histological findings demonstrated that the right CCAs had evident eccentric plaques. Six plaques (50%) with evident positive remodeling were observed. Marked progression was clearly observed in the same plaque at 12 weeks after injury when it underwent repeat OCT and IVUS. We demonstrated, for the first time, a novel model of atherosclerosis induced by FeCl3. The model is simple, fast, inexpensive, and reproducible and has a high success rate. The eccentric plaques and remodeling of plaques were common in this model. We successfully carried out IVUS and OCT examinations twice in the same lesion within a relatively long period of time

    Serum uromodulin and progression of kidney disease in patients with chronic kidney disease

    Full text link
    Abstract Background Uromodulin is specifically synthesized and secreted by kidney tubular epithelial cells. Studies on the association of serum uromodulin and outcomes of chronic kidney disease (CKD) are lacking. This study aimed to evaluate whether serum uromodulin was associated with outcomes of patients with CKD. Methods We measured serum uromodulin concentrations by ELISA in 2652 CKD patients from the Chinese Cohort Study of Chronic Kidney Disease (C-STRIDE) and investigated the association of serum uromodulin with outcomes of CKD patients, including end-stage kidney disease (ESKD) receiving kidney replacement therapy, cardiovascular events and mortality by Cox proportional hazards regression model. Results A total of 2652 CKD patients were enrolled in this study, with an age of 48.7 ± 13.8 years and the baseline eGFR of 49.6 ± 29.4 mL/min/1.73 m2, of whom 58.4% were male. The median level of urinary albumin/creatinine ratio and serum uromodulin was 473.7 mg/g (IQR 134.1–1046.6 mg/g) and 77.2 ng/mL (IQR 48.3–125.9 ng/mL), respectively. Altogether, 404 ESKD, 189 cardiovascular events, and 69 deaths occurred during the median follow-up of 53.6 (IQR 44.0–64.0) months. Lower levels of serum uromodulin were independently associated with higher risk of incident ESKD after adjusting for traditional cardiovascular risk factors, with the hazard ratios (HRs) of 3.23 (95% confidence intervals [CIs] 2.15–4.85) for the middle tertile and 7.47 (95% CI 5.06–11.03) for the bottom tertile, compared with top tertile and 0.31 (95% CI 0.25–0.38) per every standard deviation increase. After further adjustment for the baseline eGFR, the association was greatly attenuated, but still significant, with HRs of 1.92 (95% CI 1.26–2.90) for the bottom tertile compared with top tertile and 0.69 (95% CI 0.55–0.86) per every standard deviation increase. Conclusions Serum uromodulin is independently associated with an increased risk of incident ESKD in CKD patients.https://deepblue.lib.umich.edu/bitstream/2027.42/146520/1/12967_2018_Article_1693.pd

    Comprehensive genomic profiling reveals prognostic signatures and insights into the molecular landscape of colorectal cancer

    Get PDF
    BackgroundColorectal cancer (CRC) is a prevalent malignancy with diverse molecular characteristics. The NGS-based approach enhances our comprehension of genomic landscape of CRC and may guide future advancements in precision oncology for CRC patients.MethodIn this research, we conducted an analysis using Next-Generation Sequencing (NGS) on samples collected from 111 individuals who had been diagnosed with CRC. We identified somatic and germline mutations and structural variants across the tumor genomes through comprehensive genomic profiling. Furthermore, we investigated the landscape of driver mutations and their potential clinical implications.ResultsOur findings underscore the intricate heterogeneity of genetic alterations within CRC. Notably, BRAF, ARID2, KMT2C, and GNAQ were associated with CRC prognosis. Patients harboring BRAF, ARID2, or KMT2C mutations exhibited shorter progression-free survival (PFS), whereas those with BRAF, ARID2, or GNAQ mutations experienced worse overall survival (OS). We unveiled 80 co-occurring and three mutually exclusive significant gene pairs, enriched primarily in pathways such as TP53, HIPPO, RTK/RAS, NOTCH, WNT, TGF-Beta, MYC, and PI3K. Notably, co-mutations of BRAF/ALK, BRAF/NOTCH2, BRAF/CREBBP, and BRAF/FAT1 correlated with worse PFS. Furthermore, germline AR mutations were identified in 37 (33.33%) CRC patients, and carriers of these variants displayed diminished PFS and OS. Decreased AR protein expression was observed in cases with AR germline mutations. A four-gene mutation signature was established, incorporating the aforementioned prognostic genes, which emerged as an independent prognostic determinant in CRC via univariate and multivariate Cox regression analyses. Noteworthy BRAF and ARID2 protein expression decreases detected in patients with their respective mutations.ConclusionThe integration of our analyses furnishes crucial insights into CRC’s molecular characteristics, drug responsiveness, and the construction of a four-gene mutation signature for predicting CRC prognosis

    Effects of moderate drought extension on bacterial network structure in the rhizosphere soil of Leymus chinensis in semi-arid grasslands

    Get PDF
    IntroductionGrasslands are home to complex bacterial communities whose dynamic interactions play a crucial role in organic matter and nutrient cycling. However, there is limited understanding regarding the impact of changes in rainfall amount and the duration of dry intervals on bacterial interactions.MethodsTo assess the impact of changes in precipitation volume and dry intervals on bacterial co-occurrence networks, we carried out precipitation manipulation experiments in the Eastern Eurasian Steppe of China.Results and DiscussionWe found that alterations in precipitation and dry intervals did not significantly affect bacterial alpha and beta diversity. However, we observed significant changes in the co-occurrence network structure of bacteria in the rhizosphere ecosystem, with the 12-day dry interval showing the most notable reduction in the number of degrees, edges, and clustering coefficient. Additionally, the study identified putative keystone taxa and observed that the moderately prolonged dry intervals between precipitation events had a major effect on the robustness of bacterial networks. The complexity and stability of the network were found to be positively correlated, and were primarily influenced by soil water content, phosphorous, and aboveground biomass, followed by available phosphorus (AP) and total biomass. These findings have the potential to enhance our comprehension of how bacterial co-occurrence pattern react to variations in dry intervals, by regulating their interactions in water-limited ecosystems. This, in turn, could aid in predicting the impact of precipitation regime alterations on ecosystem nutrient cycling, as well as the feedback between ecosystem processes and global climate change
    corecore