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Transcriptome profiling of the floating-
leaved aquatic plant Nymphoides peltata
in response to flooding stress
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Abstract

Background: Waterlogging or flooding is one of the most challenging abiotic stresses experienced by plants.
Unlike many flooding-tolerant plants, floating-leaved aquatic plants respond actively to flooding stress by fast
growth and elongation of its petioles to make leaves re-floating. However, the molecular mechanisms of this plant
group responding to flood have not been investigated before. Here, we investigated the genetic basis of this
adaptive response by characterizing the petiole transcriptomes of a floating-leaved species Nymphoides peltata
under normal and flooding conditions.

Results: Clean reads under normal and flooding conditions with pooled sampling strategy were assembled into
124,302 unigenes. A total of 8883 unigenes were revealed to be differentially expressed between normal and
flooding conditions. Among them, top ranked differentially expressed genes were mainly involved in antioxidant
process, photosynthesis process and carbohydrate metabolism, including the glycolysis and a modified tricarboxylic
acid cycle – alanine metabolism. Eight selected unigenes with significantly differentiated expression changes
between normal and flooding conditions were validated by qRT-PCR.

Conclusions: Among these processes, antioxidant process and glycolysis are commonly induced by waterlogging
or flooding environment in plants, whereas photosynthesis and alanine metabolism are rarely occurred in other
flooding-tolerant plants, suggesting the significant contributions of the two processes in the active response of
N. peltata to flooding stress. Our results provide a valuable genomic resource for future studies on N. peltata and
deepen our understanding of the genetic basis underlying the response to flooding stress in aquatic plants.
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Background
Understanding how individuals respond to ever-changing
environments is of fundamental importance in all organ-
isms. Plants encounter various biotic and abiotic stresses
throughout their life span. One of the most dramatic
abiotic stresses is flooding [1]. Plants cannot actively
escape a flooding environment due to their immobile
character [2], and many plants are injured or killed by
flooding events due to oxygen shortage in their cells [3, 4].
However, over the long period of adaptive evolution,
plants have evolved the capacity to survive flooding
habitats via escape phenotypes, e.g., the shoot elongation,

the formation of aerenchyma, and the induction of gas
films [5]. Recently, the molecular mechanisms of physi-
ology and metabolic modulation behind these adaptive
traits have been investigated in crops and wetland plants
[6–10]. However, few such studies have been conducted
on true aquatics, floating-leaved or submerged aquatic
plants [11], which are specialized to life in water and likely
have different responding mechanisms to flooding com-
pared with other plants.
The fringed water lily Nymphoides peltata (S. G. Gmelin)

Kuntze is a typical floating-leaved plant with a widespread
distribution in temperate and subtropical regions of
Eurasia [12]. Nymphoides peltata usually roots in the
bottom mud and maintains its leaves afloat on the
water surface with the connection of petioles. When
subjected to flooding, the leaves of N. peltata can

* Correspondence: xuxw@whu.edu.cn
Department of Ecology, College of Life Sciences, Wuhan University, 299 Bayi
Road, Wuhan 430072, China

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Wu et al. BMC Genomics  (2017) 18:119 
DOI 10.1186/s12864-017-3515-y

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Springer - Publisher Connector

https://core.ac.uk/display/81807883?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1186/s12864-017-3515-y&domain=pdf
mailto:xuxw@whu.edu.cn
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


rapidly reach the water surface by rapid elongation of the
petioles [13, 14], an ability that is also present in many
other floating-leaved plants [15]. This trait makes N.
peltata an ideal aquatic species for investigating the mo-
lecular mechanisms of plants to avoid submergence stress.
Previous study showed that ethylene played a major role
in the case where submergence promotes petiole elong-
ation in N. peltata [13]. which is similar with many
aquatic or flooding-tolerant species, e.g., Rumex palustris
[6] and rice [10]. However, the molecular mechanisms of
flood-adaption in N. peltata still remain unclear. As a
non-model plant, genomic information of N. peltata is
scarce, except for the development of several molecular
markers [16, 17], which hinders the exploration of the
underlying flood-adaption mechanisms in this plant.
With the emergence of next-generation sequencing
technologies, a new technology RNA-Seq (RNA se-
quencing) independent of genetic background has been
developed [18, 19]. Recently, RNA-Seq has been uti-
lized to elucidate the response of non-model plants to
various environmental stresses, including flooding and
waterlogging [20–23].
In this study, we examined the global gene expression

changes of N. peltata under both normal and flooding
conditions using Illumina RNA-Seq technology. The re-
sults provide a comprehensive view of the complex mo-
lecular events involved in the response of floating-leaved
plants to flooding stress and expand our understanding
of response to flooding stress.

Results
Illumina sequencing and assembly
In total, 78,037,588 and 103,266,542 clean reads were
obtained from the untreated sample (US) and the treated
sample (TS), respectively (Table 1). Assembly of those
reads from US and TS separately generated 87,673 and

95,372 unigenes, respectively (Table 1). The strategy of
pooling all clean reads from US and TS together gener-
ated 124,302 unigenes with a N50 length of 1449 bp
after assembly (Table 1). The number of unigenes from
the pooled strategy was larger than those from separate
assemble because some unigenes with low expression
levels generated with the pooled strategy cannot be
found when using strategy of separate assemble due to
their less reads. Among these 124,302 unigenes, the total
number of unigenes longer than 500 bp was 56,943,
accounting for 45.81% of all unigenes (Additional file 1).
The detailed length distribution of 124,302 unigenes
predicted from the pooled assembly can be also found in
Additional file 1.

Gene annotation and functional classification
Unigenes generated using the pooled strategy were used
for further analysis. Among these 124,302 unigenes, a total
of 53,870 (43.34%) unigenes were annotated (Table 1).
According to the NCBI non-redundant proteins (NR)
annotation, 53,744 (43.24%) unigenes had homologous
proteins in the NR protein database (Table 1). Meanwhile,
unigenes were also matched with GO category, and
30,326 (24.40%) unigenes were assigned to one or more
GO terms (Table 1). Using GO annotation, the functions
of the unigenes were divided into three categories: bio-
logical process, cellular component, and molecular func-
tion. To obtain a detailed view of the GO classification,
each GO category was further clustered to its parent term
(Additional file 2). The results indicate that most of the
sequenced genes were responsible for fundamental bio-
logical regulation and metabolism.
Furthermore, the possible functions of 124,302 uni-

genes were predicted using searches against the Cluster
of orthologous groups (COG) database as well as Swiss-
Prot Protein Sequence (Swissprot) database. A total of

Table 1 Overview of transcriptome sequencing and unigene annotations

Untreated sample (No flooding stress) Treated sample (Under flooding stress) Total

Raw reads 87,520,118 115,308,872

Clean reads 78,037,588 103,266,542

Q20 (%)a 95.31 95.63

Unigene numberb 87,673 95,372 124,302

Unigene N50 (bp)b 1195 1140 1449

NR databaseb 37,697 42,654 53,744

Swissprot databaseb 26,086 31,422 37,556

GO deatabaseb 22,602 25,733 30,326

KEGG databaseb 8409 10,048 11,408

COG databaseb 34,413 39,180 48,156

Total annotatedb 43.81% 45.11% 43.86%
aThe percentage of sequences with an error rate < 1%
bThese statistics were based on an assembly of all clean reads from both treated and untreated samples
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48,156 unigenes were matched with the COG database
(Table 1) and classified into 25 specific categories
(Additional file 2). The “General function prediction
only” was the largest group (20.08%), followed by
“Posttranslational modification, protein turnover, chap-
erones” (9.99%) and “Signal transduction mechanisms”
(9.21%) (Additional file 2). We also obtained 37,556
hits when searched against Swissprot protein database
with an E-value of 1.0E-5, covering 31.62% of all
unigenes (Additional file 3). All the deduced protein
sequences corresponding to the predicted coding DNA
sequences (CDS) were listed in Additional file 4. Kyoto
encyclopedia of genes and genomes (KEGG) pathway
analysis was also conducted to predict the function of
the unigenes during the development process. In total,
11,409 unigenes were found to be involved in 244
pathways (Table 1).
We also used the phytozome database (http://www.phy-

tozome.net/) to annotate unigenes. Similar as the NR data-
base, the percent of annotated unigenes was about 43%
(Additional file 5), which is much lower than a normal
annotation percentage 70% in other plants. To examine
whether these unannotated unigenes were non-coding
RNA genes or lineage-specific genes, we predicted se-
quences of the unannotated unigenes and found that most
of them have predicted CDS. We further used the unanno-
tated unigenes as queries to search against the plant non-
coding RNAs database and found that only a small
proportion of unigenes matched the sequences in the non-
coding RNAs database (Additional file 5). Therefore, most
of the unannotated unigenes were inferred to be Nym-
phoides peltata lineage-specific genes.

Comparison between treated and untreated samples
Functional annotation and COG classification for the
separately assembled unigenes for samples TS and US
was also conducted after annotation of unigenes using
the pooled strategy, the results were shown in Fig. 1.
The number of unigenes in each category for GO and
COG annotation showed parallel proportion between
these two samples, indicating that transcriptomes of
sample TS and US were comparable.
Furthermore, we listed the top 20 ranked unigenes

with high expression level in sample TS and the cor-
responding unigenes in sample US (Table 2). Among
these 20 unigenes, 10 were DEGs, which encoded
proteins mainly involved in osmoregulation (e.g.,
aquaporin and osmotin-like protein) and proline-rich
protein (Table 2). The former is very helpful in the
regulation of water homeostasis and water transport,
and the latter is a cell wall protein of plant regulating
plant wound and defense responses. As for the other
10 unigenes, they were mainly involved in photosyn-
thesis process (e.g., ribulose bisphosphate carboxylase

and chlorophyll a-b binding protein) and antioxidant
process (e.g., peroxidase and glutamine synthetase
cytosolic isozyme) (Table 2).

Analysis of differentially expressed genes
After calculating the unigene expression level, with an
FDR (false discovery rate) of 0.05 and |log2Fold
Change| ≥ 1 as a cutoff, a total of 8883 (6401 up-
regulated and 2482 down-regulated) unigenes were
revealed to be significantly differentially expressed
between the treated and untreated samples. The top
20 ranked differentially expressed unigenes were iden-
tified. Among them, most genes were involved in
basic cell component (e.g., proline-rich protein and
ribosomal protein), photosynthesis (e.g., chlorophyll a-b
binding protein, chloroplastic glyceraldehyde 3-phosphate
dehydrogenase, and ribulose bisphosphate carboxylase)
and antioxidant process (e.g., L-ascorbate oxidase
homolog, ferric reduction oxidase, and peroxidase)
(Table 3).
GO enrichment analysis of DEGs indicated that 153

GO terms were significantly enriched with the criteria of
FDR < 0.01. Of them, 71 terms were enriched in the cat-
egory of biological process, 52 in molecular function,
and 30 in cellular component (Additional file 6). Further
analysis showed that GO terms related to three aspects
(energy, antioxidant, photosynthesis) were significantly
important (Fig. 2).
KEGG pathway analysis of the DEGs indicated that

various genes were working together to execute func-
tions. Overall, the most significant pathways were Ribo-
some pathway (ko03010) with 315 DEGs enriched,
followed by pathways of Photosynthesis (ko00195, 99)
and Photosynthesis - antenna protein (ko00196, 91)
(Fig. 3). Further analysis showed that pathways involved
in energy metabolism, antioxidant process, and photo-
synthesis process were also present (Fig. 3).

Transcriptome changes of Nymphoides peltata and five
other plants in response to flooding
To gain a broad picture of plant responses to flood-
ing, we listed transcriptome changes of Nymphoides
peltata and five other plants to cope with flooding in
Table 4. It appears that common responses to flood-
ing in transcriptome were involved in glycolysis, the
antioxidant process, the fermentation and the present
of group VII ethylene response factor transcription
factors (GVIIERFs) (Table 4). By contrast, expression
changes of the alanine metabolism under submer-
gence were only observed in N. peltata and Lotus
japonicas (Table 4). As a species of true aquatic plant,
N. peltata remained active photosynthesis under sub-
mergence, which has not been reported in other
plants (Table 4).
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Molecular adaptation of aquatic plants compared with
non-aquatic plants
To identify molecular adaptation in aquatic plants and
help understand flooding response in plants, we applied
a likelihood approach to detect molecular adaptation by
estimating the ratio (ω) of nonsynonymous to synonym-
ous substitution rates. Our dataset contained three
aquatic plants and five non-aquatic plants. Within the
aquatic plants, one (Utricularia gibba) has a draft
genome, and the remaining two (Ranunculus bungei,
and Nymphoides peltata) have transcriptome data. By

contrast, all five non-aquatic plants (Arabidopsis tha-
liana, Oryza sativa, Solanum lycopersicum, Daucus
carota, and Cucumis sativus) possess available genome
sequences. A total of 5319 one-to-one orthologous genes
were identified in our dataset. Using an established
species tree from the Angiosperm Phylogeny Website
(http://www.mobot.org/MOBOT/research/APweb/), we
tested the possibility of differential selection between
aquatic and non-aquatic plants, by comparing a one-
ratio model with a two-ratio model. The one-ratio model
assumes a uniform ω ratio across all plants, while the

a

b

Fig. 1 GO (Gene ontology) and COG (Cluster of orthologous groups) annotation. a GO annotation of the assembled unigenes for the treated
sample (TS) and the untreated sample (US) separately, the functions of the unigenes were divided into three categories. b Information of COG
classification for the treated sample (TS) and the untreated sample (US) separately, the unigenes were mainly clustered into 25 components
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two-ratio model assumes two ω ratios: all non-aquatic
plants have ω0, whereas all aquatic plants have ω1. Our
analyses yielded 18 genes with significantly higher evolu-
tionary rates in aquatic plants (Additional file 7), indicat-
ing that these genes may play important roles in
adaptation to aquatic environments. Notably, two of
these genes were outstanding for their antioxidant role.
One is the gene encoding NAT2 (Nucleobase-ascorbate
transporter), which is involved in the ascorbate transport
and the ascorbate play an important role in antioxidant
[24] (Additional file 7). The other gene is CAT2 en-
coding an enzyme Catalase-2, which is an anti-oxidant
enzyme to protect cells from the toxic effects of hydro-
gen peroxide [25] (Additional file 7).

Validation of the RNA-Seq data
To verify our RNA-Seq data, the expression levels of
eight unigenes were examined by quantitative real-time
PCR (qRT-PCR) experiment. Of the eight genes, two
genes are known to encode Glutathione S-transferases
(GST) and Glutathione peroxidases (GPX), which are
antioxidant enzymes (Table 5); two genes encode Photo-
system I subunit XI (PsaL) and Photosynthetic electron

transport ferredoxin (PetF), which are associated with
photosynthesis process (Table 5); four genes encode
Alcohol dehydrogenase (ADH), Lactate dehydrogenase
(LDH), Alanine aminotransferase (AlaAT) and Aspartate
transaminase (AspAT), which are involved in carbohy-
drate metabolism, including fermentative pathway and a
modified tricarboxylic acid cycle mode - alanine metab-
olism (Table 5). All eight genes exhibited higher expres-
sion level in response to flooding (Table 5), indicating
that these genes are indeed stimulated by flooding stress.
In addition, their expression changes measured from
qRT-PCR were consistent with those estimated from the
RNA-Seq data (Table 5).

Discussion
In this study, using the RNA-Seq technology, transcrip-
tome changes of N. peltata were obtained under both
normal and flooding conditions. In total, 78,037,588 and
103,266,542 high-quality reads were acquired for US and
TS sample, respectively. Gene annotation towards vari-
ous databases (NR, COG, Swissprot, GO, and KEGG)
was conducted after reads assembly. After calculation of
gene expression for each unigene and a strict criterion, a

Table 2 The top 20 ranked unigenes (based on expression level) in the TS sample and the corresponding unigenes in
the US sample

Unigene ID FPKM Log2FC Swissprot annotation

US TS

CL1448Contig1* 4098.9 6615.6 0.6906 Putative uncharacterized protein ART2

con2.comp50853_c1_seq1* 2359.4 5061.6 1.1012 Ribulose bisphosphate carboxylase

con2.comp55521_c1_seq2* 2683.5 2716.9 0.0178 Chlorophyll a-b binding protein

CL19733Contig1 62.02 2388.1 5.2670 Aquaporin TIP1-1

d2.comp66814_c0_seq1 405.58 2025.4 2.3201 Homocysteine methyltransferase

con2.comp46855_c0_seq1 563.36 2014.8 1.8385 Chlorophyll a-b binding protein

con2.comp56741_c0_seq1 272.93 1970.4 2.8519 Adenosyl homocysteinase sahh

CL21Contig8 281.14 1902.9 2.7588 Pistil-specific extensin-like

d2.comp52786_c0_seq1 96.70 1769.6 4.1938 Osmotin-like protein osml13

CL14756Contig1 30.91 1628.7 5.7195 14 kda proline-rich protein

con2.comp43560_c0_seq1* 1158.0 1462.4 0.3367 Lipid-transfer protein dir1

d2.comp33048_c0_seq1 766.12 1450.9 0.9213 Chlorophyll a-b binding protein

con2.comp58109_c0_seq5 49.71 1442.6 4.8590 Proline-rich protein

CL10800Contig1 414.22 1422.8 1.7803 Isoflavone reductase-like protein

d2.comp65178_c0_seq2* 802.5 1416.2 0.8195 Chlorophyll a-b binding

d2.comp61695_c0_seq1* 1033.1 1370.1 0.4073 Glutamine synthetase cytosolic isozyme

con2.comp53151_c0_seq8 252.52 1350.1 2.4186 Aquaporin TIP1-1

d2.comp59904_c0_seq3 129.21 1349.1 3.3842 Proline-rich protein

d2.comp54069_c0_seq1 413.02 1343.1 1.7013 Peroxidase 12

CL68Contig3 68.81 1341.1 4.2847 Chlorophyll a-b binding protein

Note: US Untreated Sample, TS Treated Sample. FPKM represents unigene expression level that is normalized by FPKM (Fragments per Kilobase per Million
mapped reads) approach. The six unigenes denoted with an asterisk (*) indicated highly expressed unigenes in both untreated and treated samples. The unigenes
in bold are differentiated expressed genes (DEGs) between US and TS sample
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total of 8883 unigenes were defined as DEGs, which
were either induced or depressed by flooding stress.
Besides, the top 20 ranked differentially expressed uni-
genes were mainly involved in antioxidant, photosyn-
thesis and protein-related activity. In addition, GO
enrichment and KEGG enrichment analysis of DEGs
also presented processes involved in carbohydrate source
(photosynthesis), self-protection area (antioxidants) and
energy supplier (glycolysis). Moreover, the molecular

adaptation of the aquatic plants compared with non-
aquatic plants suggested that genes involved in anti-
oxidant processes having significantly higher evolutionary
rates in aquatic plants. These findings indicate that pro-
cesses mentioned above play important roles in response
of N. peltata to flooding.
When plants under flooding pressure, many physio-

logical responses will be induced. Ethylene release was
one of these responses. Previous studies showed that the

Table 3 The top 20 ranked most differentially expressed unigenes between normal and flooding conditions

Unigene ID Log2FC FDR Swissprot annotation

d2.comp62123_c2_seq4 13.94 5.99E-20 Chlorophyll a-b binding protein

d2.comp52108_c0_seq2 13.78 9.43E-20 Auxin-induced in root cultures protein

d2.comp54965_c0_seq2 13.09 5.46E-18 Proline-rich protein 4

d2.comp53053_c0_seq1 12.78 2.03E-17 Kirola

d2.comp66621_c0_seq4 12.71 2.94E-17 Protein da1-related 1

d2.comp60426_c0_seq5 12.68 3.27E-17 Benzyl alcohol 0-benzoyltransferase

d2.comp57055_c0_seq2 12.16 7.80E-16 mitochondrial chaperone bcs1

d2.comp61187_c1_seq1 11.68 1.84E-14 Glyceraldehyde 3-phosphate dehydrogenase chloroplastic

d2.comp56332_c0_seq2 11.58 3.11E-14 Heat shock cognate 70 kda protein 2

d2.comp58962_c0_seq1 11.57 3.22E-14 Cluminal-binding protein 4

d2.comp61381_c0_seq1 11.42 6.45E-14 Heat shock cognate protein 80

d2.comp63783_c0_seq1 11.37 9.00E-14 L-ascorbate oxidase homolog

d2.comp62781_c0_seq1 11.29 1.42E-13 Probable ferric reduction oxidase 1

d2.comp57757_c0_seq1 11.28 1.45E-13 40s ribosomal protein s2-2

d2.comp62067_c0_seq1 11.27 1.50E-13 Carrier protein chloroplastic

d2.comp59687_c0_seq1 11.12 3.92E-13 Uncharacterized protein At1g08160

d2.comp54780_c1_seq1 11.11 4.24E-13 Elongation factor 1-alpha

d2.comp57273_c0_seq1 11.03 6.61E-13 Chlorophyll a-b binding protein

d2.comp54437_c2_seq1 11.02 6.61E-13 Peroxidase 27

d2.comp55364_c0_seq2 11.00 7.07E-13 Ribulose bisphosphate carboxylase

Note: Log2FC was estimated by the difference between Log2(FPKM of TS sample) and Log2(FPKM of US sample). FDR: p value corrected by false discovery rate
at 5%

Fig. 2 GO enrichment analysis of putatively selected GO terms of DEG functions. DEG differentially expressed gene. Gene number is shown next
to each GO term
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shoot elongation strategy was mainly driven by ethylene,
such as rice and Rumex [10, 22]. In N. peltata, the shoot
elongation was also driven by ethylene and has been
physiologically validated [13]. In addition, the cell num-
ber was increased to a large number, which contributed
to the rapid elongation. Our transcriptome results iden-
tified some ethylene response factors and some cell cycle
related genes such as CDC7 and CAFP, which proved
the fact that ethylene release was induced by flooding as
a physiological response. Moreover, flooding often
leads plants to oxygen shortage situation, which can
induce ROS generation, and anti-oxidant enzymes
were activated to protect the cell membrane [26, 27].
In N. peltata, though we were not able to detect
enzyme activity, we can infer that the activity of anti-
oxidant enzymes was induced under flooding stress.
Several antioxidant genes such as GST and GPX and
two fast evolving genes NAT2 and CAT2 involved in
anti-oxidant were identified, indicating an activated
ROS elimination process. Taken together, these results

validated the physiological response of N. peltata
under flooding stress.
Plants are challenged by various abiotic stresses. The

increased accumulation of reactive oxygen species
(ROS), including singlet oxygen, superoxide radicals, and
hydrogen peroxide, is a key signature of abiotic stress at
the molecular level [28]. To resist this harmful effect,
plants employ a system that catalyzes the elimination of
ROS and fights with oxidative damage via the formation
of antioxidant enzymes, such as GST and GPX [29–31].
In the present study, the expression of DEGs encoding
antioxidant enzymes GST and GPX was greatly larger
than that under normal conditions, which has been
validated by the qRT-PCR experiment (Table 5). Consist-
ently, many antioxidant enzymes have been shown to be
essential for plant survival during adaptive responses to
waterlogging or flooding stress [22, 32–34]. Therefore,
these antioxidant enzymes may be induced by flooding
stress and critical for the survival of N. peltata in a
submerged environment.

Fig. 3 Significantly enriched KEGG pathways of DEG functions. DEG differentially expressed gene

Table 4 Transcriptome changes of Nymphoides peltata (this study) and five other plants in response to flooding

Species GVIIERFs Hormone Energy
sources

ROS scavenging
enzymes

Fermentation Alanine
metabolism

Photosynthesis References

Nymphoides
peltata

present Ethylene IAA, ABA Glycolysis,
Modified TCA

GST, GPX,
APX, SOD

ADH, LDH AlaAT, AspAT Increased (this study, [13])

Arabidopsis
thaliana

present Ethylene IAA Glycolysis CSD2, GPX, APX ADH, PDC AlaAT unexamined [5, 47, 50, 61, 62]

Oryza sativa present Ethylene GA, ABA Glycolysis APX, GR,
GST, SOD

ADH, PDC unexamined unexamined [10, 62–65]

Rumex palustris present Ethylene ABA, GA Glycolysis GPX, GSH ADH unexamined unexamined [22]

Lotus japonicus unexamined Ethylene ABA Glycolysis,
Modified TCA

GST, SOD ADH, PDC, LDH AlaAT, AspAT unexamined [49, 66]

Taxodium
mucronatum
× T. distichum

unexamined unexamined Glycolysis Peroxidase ADH, LDH, PDC unexamined unexamined [23]
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When plants live in a submerged environment, both
light and carbon supplies are limited due to the slower
diffusion rates in water [35, 36], which decreases plant
photosynthesis performance. However, photosynthesis is
important for plant survival, which makes the continu-
ation of aerobic respiration through the elevated oxygen
concentrations possible. The aerobic respiration is more
efficient compared with anaerobic metabolism [37]. For
N. peltata, transcriptome analysis revealed that many
photosynthesis processes were predominantly enriched
in GO terms (Fig. 2) and KEGG pathways (Fig. 3),
suggesting the continuation of photosynthesis under
flooding stress. Previous studies showed that submerged
plants have physiological adaptation mechanisms termed
carbon-concentrating mechanisms (CCMs) to produce
more CO2 [38], including use of HCO3

− and crassulacean
acid metabolism (CAM) [39, 40]. Moreover, the use of
HCO3

− as a CO2 substrate is a common way for most
true aquatic plants [41, 42]. Therefore, the continuation
of photosynthesis of N. peltata under submergence may
be attributed to the mechanism of using HCO3−. In
addition, species that have leaf gas films or that can
produce new leaves under waterlogging often have higher
CO2 affinity and higher CO2 concentrations [43, 44].
Therefore, the similar ability of N. peltata to produce new
acclimated leaves during submergence might also contrib-
ute to the continuation of photosynthesis underwater.
Although the activation of photosynthesis was indicated
by our petiole transcriptional data, further studies should
be added to draw a reliable conclusion on photosynthesis
of N. peltata under flooding stress.
Large amounts of energy and carbohydrate are

required for the rapid submergence-induced petiole
elongation of N. peltata. The initial response to a
submergence environment is the induction of an-
aerobic metabolism [3]. For N. peltata, many DEGs
involved in the fermentative pathway were identified
and also the glycolysis process and pyruvate metab-
olism (ko00710) was predominantly in the GO and
KEGG enrichment analysis (Figs. 2 and 3). The simi-
lar performance of these two enzymes stimulated by

waterlogging has also been reported in other plants
[23, 45], indicating that the fermentative pathway
was likely activated to provide essential energy. However,
this universal anoxia metabolism has a side effect: low
efficiency [46]. Considering the active and rapid response
of N. peltata to flooding stress, there should be alternative
metabolic forms with high efficiency to supply the energy
required. Moreover, in order to keep the efficiency in
glycolysis under oxygen deficiency, it is important to
remove accumulated pyruvate. The enzyme AlaAT
(Alanine aminotransferase) can transform pyruvate into
alanine, and increased alanine accumulation, which is
correlated with enhanced activity of AlaAT, under
anoxic conditions has been reported in other plants
[47, 48]. This process is also likely present in N. peltata
because DEGs encoding AlaAT were identified and
their up-regulation expression level was validated by
the qRT-PCR experiment (Table 5). In addition, a modi-
fied tricarboxylic acid (TCA) cycle mode-alanine metabol-
ism was found to be induced by waterlogging in Lotus
japonicus [49]. The yield produced from the metabolic
reprogramming associated with alanine metabolism
(4 ATP) doubled energy produced from glycolysis (2 ATP)
[49]. Another DEGs encoding critical enzyme in alanine
metabolism, AspAT (Aspartate transaminase), whose ex-
pression level was validated by the qRT-PCR, indicating
that alanine metabolism was likely induced as energy
source by flooding in N. peltata.
It is well known that ethylene is one of the main

drivers for depth adaptation in flooding-tolerant plants
[13]. Furthermore, group VII ethylene response factors
(GVIIERFs) were identified to activate the expression of
hypoxia-related genes by an N-end rule pathway under
low oxygen conditions [50]. GVIIERF proteins were
found in many plants such as Arabidopsis thaliana,
Oryza sativa and Rumex palustris (Table 4). In N. pel-
tata, we identified 3 GVIIERFs with the characteristic
MCGGAIL amino-terminus in our transcriptome as-
sembly. Indeed, GVIIERFs were found in other aquatic
plants as Ranunculus bungei and Utricularia gibba,
even can be found in the marine angiosperm Zostera

Table 5 Validation of the DEGs with qRT-PCR experiment

Unigene ID Gene name Fold change by RNA-Seq Fold change by qRT-PCR

d2.comp51231_c0_seq1 GST 8.79 10.85 ± 0.941

d2.comp347335_c0_seq1 GPX 6.23 5.23 ± 0.115

CL3838contig1 ADH1 2.29 1.74 ± 0.086

d2.comp60738_c0_seq1 LDH 6.07 3.47 ± 0.343

d2.comp51785_c0_seq1 AlaAT 7.91 9.82 ± 0.124

d2.comp63174_c0_seq1 AspAT 2.10 1.46 ± 0.047

d2.comp58507_c0_seq3 PsaL 7.94 11.60 ± 0.029

d2.comp47781_c0_seq1 PetF 6.23 3.92 ± 0.279

Note: The confirmation of expression level of candidate genes examined by real-time PCRs with three technical replications. DEG differentially expressed genes
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marina by searching its genome sequence. These find-
ings indicate that the oxygen sensing mechanism via
GVIIERFs may be conserved in N. peltata and in other
higher plants. Notably, we didn’t find GVIIERFs in the
differential gene sets of N. peltata, possibly because of
our long-duration sampling. Specifically, in this study
we were mainly interested in the expression changes of
unigenes at the time point of the seventh day, which
may be too late to detect the expression changes of
GVIIERFs. Indeed, the release of ethylene is an earlier
signal in response to flooding [22].

Conclusions
In the present study, comprehensive and valuable gen-
omic resources were built by comparative transcriptome
of petioles under normal and flooding conditions of
Nymphoides peltata. Our data suggests that two pro-
cesses rarely occurred in other flooding-tolerant plants,
active photosynthesis and alanine metabolism, are likely
contributed to the active response of N. peltata to flood-
ing stress. These results deepen our understanding of
the genetic basis underlying the response to flooding
stress in aquatic plants. The response of plants to abiotic
stresses is a complex network functioning with the regu-
lation of stress-related genes [51], therefore, further in-
vestigations are still essential to detail the active
responses of aquatic plants to flooding stress.

Methods
Plant growth and flooding treatment
Young, healthy N. peltata plants were identified by
Professor Dan Yu and collected from Liangzi Lake
(30°15′29″N, 114°33′30″E) and cultured in glass
tanks in a greenhouse at Wuhan University, China.
After a week of culturation, the experiment was con-
ducted in May 2014. We chose 20 plants with a
height of about 15 cm and transplanted them into
two glass tanks, 10 in each tank. We added water in
the two tanks to reach water depth of 15 cm and
acclimatized plants two days. One tank was used as
the untreated group keeping the water depth of
15 cm, the other served as the treated group increas-
ing the water depth to 100 cm. The submerged leaves
in the treated tank reached the water surface in the
seventh day by elongation of their petioles. Then
plant petioles were collected. Petioles from the con-
trol tank were used as untreated sample (US) and
those from the treated tank were considered as
treated sample (TS). Each sample was the mixture of
petioles from 5 plants. Samples were frozen in liquid
nitrogen and stored at −80 °C prior to RNA extrac-
tion. Total RNA of each sample was extracted using
HiPure Plant RNA Kits (Magen, China) following the
manufacturer’s instruction.

Library construction and transcriptome sequencing
Sequencing was conducted commercially following the
manufacturer’s instructions after checking the quality
and concentration of RNAs. The procedure was as
follows: fragmenting the mRNA after purification, syn-
thesis of the first and second strand cDNA, and adding
specific sequence adaptors. After that, cDNA fragments
of ~200 bp were chosen to conduct with PCR amplifica-
tion. The original image data were transferred into raw
reads and saved as “fastq” files. The raw reads generated
in this study have been deposited in NCBI database
under accession number SRA259910.
The adapter sequences and low quality base calls were

removed. Firstly, the pooled strategy was employed, the
left files from both samples were mixed into left.fq file,
and right files from both samples were also mixed into
the right.fq file. Transcriptome assembly was accom-
plished based on the left.fq and right.fq using Trinity
with default parameters with the pooled strategy [52].
Then separate assembly of sample US and sample TS
were made using Trinity in order to prove our assem-
bly quality. For both strategies, redundancy and over-
representation were reduced after Trinity assemble by
finding similar sequences using TIGR Gene Indices
clustering program (TGICL) and Cluster database at
high identity with tolerance (CD-HIT) with minimum
90 and 95% similarity cut off respectively [53, 54].
The TransDecoder was then used to identify the possible
coding sequence (CDS) from the assembled sequences.

Functional annotation of pooled unigenes
To gain a better comprehension of the transcriptom
information, the pooled assembly unigene sequences
was used since some unigenes with low expression levels
generated with the pooled strategy cannot be found
when using separate sample strategy due to their less
reads in sample TS and sample US, which is an advan-
tage of pooled strategy over separate assemble. These
unigene sequences were used towards the Phytozome,
NCBI NR, COG and Swissprot database, respectively,
with a cutoff E-value of 1.0E-5. Only the best match
gene ID was assigned to each unigene. Functional an-
notation by gene ontology analysis was analyzed by
Blast2GO software with an E-value ≤1.0E-5. In addition,
KEGG pathway analysis was conducted using the KEGG
Automatic Annotation Server (KAAS).

Identification of differentially expressed genes
To examine the expression level of each unigene in both
samples, the expression of each unigene generated with
the pooled strategy was calculated using the Cufflinks
program [55]. Moreover, the unigene expression was
normalized using the fragments per kilo bases per
million reads (FPKM) method described by Mortazavi
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[56]. Subsequently, the differential gene expression
between US and TS were analyzed using the edgeR
software [57], with an FDR of 0.05 and |logFC| ≥ 1
as the threshold. DEGs were conducted GO enrich-
ment analysis and KEGG enrichment analysis using
R based on hypergeometric distribution. Significantly
enriched GO terms and KEGG pathways were identified
based on the corrected P-value (P < 0.01 and P < 0.05,
respectively).

Transcriptome changes of Nymphoides peltata and five
other plants in response to flooding
To have a better understanding of the plants responses
under flooding stress and to find the similarities/differ-
ences of waterlogging responses in Nymphoides peltata
with other land plants, transcriptome comparisons
among Nymphoides peltata and five other plants (Arabi-
dopsis thaliana, Oryza sativa, Rumex palustris, Lotus
japonicas, Taxodium mucronatum ×T. distichum) were
conducted. The transcriptome changes of other five plants
were from previously published paper. In this method,
candidate genes and biological processes involved in flood-
ing response were compared across Nymphoides peltata
and five other plants.

Molecular adaptation of aquatic plants compared with
non-aquatic plants
A comparative analysis between aquatic plants and non-
aquatic plants was carried out to identify commonalities
in aquatic plants. The genome of aquatic species Utricu-
laria gibba was downloaded from https://genomevolu-
tion.org/CoGe (v4.1, ID 19475) and transcriptome reads
of aquatic Ranunculus bungei were from SRR1822529
under the NCBI. Genomes of five non-aquatic plants in-
cluding Solanum lycopersicum (assembly SL2.50), Dau-
cus carota (assembly ASM162521v1), Cucumis sativus
(assembly ASM407v2), Oryza sativa (assembly Build 4.0)
were downloaded from NCBI and the genome sequences
of Arabidopsis thaliana were from The Arabidopsis
Information Resource (TAIR10). To identify one-to-one
orthologous genes, the reciprocal BLAST approach was
performed with each species’ CDS sequences and Arabi-
dopsis proteins as query. E-value of 1e-5 was applied and
the best hit was retained. The protein IDs of Arabidopsis
were used as reference, a total of 5319 one-to-one ortho-
logous in all species were identified and CDS sequences
were extracted using a perl script. Each orthologous
gene set was aligned used the PRANK program [58]. All
of the genes were aligned at the codon level with the
following settings: -shortnames +F -termgap -codon
-f = fasta. Following alignment, Gblocks program was
employed to identify the conserved regions at the
codon level [59]. To detect fast evolving genes in aquatic
plant group, we estimated a two-ratio branch model

allowing different ω values (the ratios of nonsynonymous
to synonymous substitution rates) in aquatic and non-
aquatic plants and one-ratio model assuming a uniform ω
value in all plants, using codeml in the PAML4.8 package
[60]. In our analysis, we set the aquatic plants as the
foreground, the other branches were set as the back-
ground. If a given gene was estimated to have a
significantly higher in the foreground branches (ω1) than
in the background branches (ω0) (corrected p < 0.05, FDR
method), the gene would be considered as a candidate
undergoing molecular adaptation.

Validation of quantitative real-time PCR (qRT-PCR)
To validate the Illumina sequencing results, eight uni-
genes involved in those processes that may be respon-
sible for the adaptation were selected for analysis using
qRT-PCR. Gene-specific primers were designed with the
Primer Premier 5.0 software, and these primer sequences
can be found in Additional file 8. RT-PCR was per-
formed as follows: 95 °C for 3 min, 35 cycles at 95 °C for
30 s, 54–64 °C for 30 s and 72 °C for 20 s; and final
extension at 72 °C for 3 min. qRT-PCR was conducted
using the SuperReal PreMix Plus (SYBR Green) (Tiangen
Biotech, Beijing, China) and a CFX Real-Time PCR
System (Bio-Rad, CA, USA). The actin like gene was used
as internal reference controls to standardize the results.
Statistical analysis was performed using the 2- ΔΔCT

method. The final values were presented as means of three
independent biological trials.

Additional files

Additional file 1: The distribution of sequence lengths for the unigenes
predicted from the pooling transcriptome assembly of Nymphoides
peltata. (PDF 122 kb)

Additional file 2: GO (Gene ontology) and COG (Cluster of
orthologous groups) annotation for the pooling transcriptome
assembly of Nymphoides peltata. (a) Functional annotation of the
assembled unigenes based on GO category, the functions of the
unigenes were divided into three categories. (b) Information of
clusters of orthologous groups (COG) classification, the unigenes
were mainly clustered into 25 components. (PDF 295 kb)
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from the pooling transcriptome assembly. (XLS 4955 kb)

Additional file 4: The deduced protein sequences of all predicted
genes in the pooling transcriptome assembly of Nymphoides peltata.
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