87 research outputs found

    Relationship between IL-10 gene -819C/T polymorphism and the risk of inflammatory bowel disease: A meta-analysis

    Get PDF
    Background: The -819C/T polymorphism in interleukin 10 (IL-10) gene has been reported to be associated with inflammatory bowel disease (IBD) ,but the previous results are conflicting.Materials and methods: The present study aimed at investigating the association between this polymorphism and risk of IBD using a meta-analysis.PubMed,Web of Science,EMBASE,google scholar and China National Knowledge Infrastructure (CNKI) databases were systematically searched to identify relevant publications from their inception to April 2016.Pooled odds ratio (OR) with 95% confidence interval (CI) was calculated using fixed- or random-effects models.Results: A total of 7 case-control studies containing 1890 patients and 2929 controls were enrolled into this meta-analysis, and our results showed no association between IL-10 gene -819C/T polymorphism and IBD risk(TT vs. CC:OR=0.81,95%CI 0.64- 1.04;CT vs. CC:OR=0.92,95%CI 0.81-1.05; Dominant model: OR=0.90,95%CI 0.80-1.02; Recessive model: OR=0.84,95%CI 0.66-1.06). In a subgroup analysis by nationality, the -819C/T polymorphism was not associated with IBD in both Asians and Caucasians. In the subgroup analysis stratified by IBD type, significant association was found in Crohn’s disease(CD)(CT vs. CC:OR=0.68,95%CI 0.48-0.97).Conclusion: In summary, the present meta-analysis suggests that the IL-10 gene -819C/T polymorphism may be associated with CD risk.Keywords: Interleukin 10, -819C/T polymorphism, inflammatory bowel diseaseDue to errors in the previous PDF especially in the 'Cite as' authors names, the PDF fulltext has been reloaded. This information is now correct

    Towards the Desirable Decision Boundary by Moderate-Margin Adversarial Training

    Full text link
    Adversarial training, as one of the most effective defense methods against adversarial attacks, tends to learn an inclusive decision boundary to increase the robustness of deep learning models. However, due to the large and unnecessary increase in the margin along adversarial directions, adversarial training causes heavy cross-over between natural examples and adversarial examples, which is not conducive to balancing the trade-off between robustness and natural accuracy. In this paper, we propose a novel adversarial training scheme to achieve a better trade-off between robustness and natural accuracy. It aims to learn a moderate-inclusive decision boundary, which means that the margins of natural examples under the decision boundary are moderate. We call this scheme Moderate-Margin Adversarial Training (MMAT), which generates finer-grained adversarial examples to mitigate the cross-over problem. We also take advantage of logits from a teacher model that has been well-trained to guide the learning of our model. Finally, MMAT achieves high natural accuracy and robustness under both black-box and white-box attacks. On SVHN, for example, state-of-the-art robustness and natural accuracy are achieved

    Relationship between IL-10 gene -819C/T polymorphism and the risk of inflammatory bowel disease: a meta-analysis.

    Get PDF
    Background: The -819C/T polymorphism in interleukin 10 (IL-10) gene has been reported to be associated with inflammatory bowel disease (IBD) ,but the previous results are conflicting. Materials and Methods: The present study aimed at investigating the association between this polymorphism and risk of IBD using a meta-analysis.PubMed,Web of Science,EMBASE,google scholar and China National Knowledge Infrastructure (CNKI) databases were systematically searched to identify relevant publications from their inception to April 2016.Pooled odds ratio (OR) with 95% confidence interval (CI) was calculated using fixed- or random-effects models. Results: A total of 7 case-control studies containing 1890 patients and 2929 controls were enrolled into this meta-analysis, and our results showed no association between IL-10 gene -819C/T polymorphism and IBD risk(TT vs. CC:OR=0.81,95%CI 0.64- 1.04;CT vs. CC:OR=0.92,95%CI 0.81-1.05; Dominant model: OR=0.90,95%CI 0.80-1.02; Recessive model: OR=0.84,95%CI 0.66-1.06). In a subgroup analysis by nationality, the -819C/T polymorphism was not associated with IBD in both Asians and Caucasians. In the subgroup analysis stratified by IBD type, significant association was found in Crohn\u2019s disease(CD)(CT vs. CC:OR=0.68,95%CI 0.48-0.97). Conclusion: In summary, the present meta-analysis suggests that the IL-10 gene -819C/T polymorphism may be associated with CD risk

    An improved positioning algorithm in a long-range asymmetric perimeter security system

    Get PDF
    In this paper, an improved positioning algorithm is proposed for a long-range asymmetric perimeter security system. This algorithm employs zero-crossing rate to detect the disturbance starting point, and then utilizes an improved empirical mode decomposition to obtain the effective time-frequency distribution of the extracted signal. In the end, a cross-correlation is used to estimate the time delay of the effective extracted signal. The scheme is also verified and analyzed experimentally. The field test results demonstrate that the proposed scheme can achieve a detection of 96.60% of positioning errors distributed within the range of 0-±20 m at the sensing length of 75 km, which significantly improves the positioning accuracy for the long-range asymmetric fence perimeter application

    Far from just a poke : Common painful needle procedures and the development of needle fear

    Get PDF
    Background: Vaccine injections are the most common painful needle procedure experienced throughout the lifespan. Many strategies are available to mitigate this pain; however, they are uncommonly utilized, leading to unnecessary pain and suffering. Some individuals develop a high level of fear and subsequent needle procedures are associated with significant distress. Objective: The present work is part of an update and expansion of a 2009 knowledge synthesis to include the management of vaccinerelated pain across the lifespan and the treatment of individuals with high levels of needle fear. This article will provide a conceptual foundation for understanding: (a) painful procedures and their role in the development and maintenance of high levels of fear; (b) treatment strategies for preventing or reducing the experience of pain and the development of fear; and (c) interventions for mitigating high levels of fear once they are established. Results: First, the general definitions, lifespan development and functionality, needle procedure-related considerations, and assessment of the following constructs are provided: pain, fear, anxiety, phobia, distress, and vasovagal syncope. Second, the importance of unmitigated pain from needle procedures is highlighted from a developmental perspective. Third, the prevalence, course, etiology, and consequences of high levels of needle fear are described. Finally, the management of needle-related pain and fear are outlined to provide an introduction to the series of systematic reviews in this issue. Discussion: Through the body of work in this supplement, the authors aim to provide guidance in how to treat vaccination-related pain and its sequelae, including high levels of needle fear

    Impact of epicardial adipose tissue volume on hemodynamically significant coronary artery disease in Chinese patients with known or suspected coronary artery disease

    Get PDF
    BackgroundEpicardial adipose tissue (EAT) is directly related to coronary artery disease (CAD), but little is known about its role in hemodynamically significant CAD. Therefore, our goal is to explore the impact of EAT volume on hemodynamically significant CAD.MethodsPatients who underwent coronary computed tomography angiography (CCTA) and received coronary angiography within 30 days were retrospectively included. Measurements of EAT volume and coronary artery calcium score (CACs) were performed on a semi-automatic software based on CCTA images, while quantitative flow ratio (QFR) was automatically calculated by the AngioPlus system according to coronary angiographic images.ResultsThis study included 277 patients, 112 of whom had hemodynamically significant CAD and showed higher EAT volume. In multivariate analysis, EAT volume was independently and positively correlated with hemodynamically significant CAD [per standard deviation (SD) cm3; odds ratio (OR), 2.78; 95% confidence interval (CI), 1.86–4.15; P < 0.001], but negatively associated with QFRmin (per SD cm3; β coefficient, −0.068; 95% CI, −0.109 to −0.027; P = 0.001) after adjustment for traditional risk factors and CACs. Receiver operating characteristics curve analysis demonstrated a significant improvement in predictive value for hemodynamically significant CAD with the addition of EAT volume to obstructive CAD alone (area under the curve, 0.950 vs. 0.891; P < 0.001).ConclusionIn this study, we found that EAT volume correlated substantially and positively with the existence and severity of hemodynamically significant CAD in Chinese patients with known or suspected CAD, which was independent of traditional risk factors and CACs. In combination with obstructive CAD, EAT volume significantly improved diagnostic performance for hemodynamically significant CAD, suggesting that EAT could be a reliable noninvasive indicator of hemodynamically significant CAD

    Integrated System Built for Small-Molecule Semiconductors via High-Throughput Approaches

    Get PDF
    High-throughput synthesis of solution-processable structurally variable small-molecule semiconductors is both an opportunity and a challenge. A large number of diverse molecules provide a possibility for quick material discovery and machine learning based on experimental data. However, the diversity of molecular structure leads to the complexity of molecular properties, such as solubility, polarity, and crystallinity, which poses great challenges to solution processing and purification. Here, we first report an integrated system for the high-throughput synthesis, purification, and characterization of molecules with a large variety. Based on the principle of Like dissolves like, we combine theoretical calculations and a robotic platform to accelerate the purification of those molecules. With this platform, a material library containing 125 molecules and their optical-electric properties was built within a timeframe of weeks. More importantly, the high repeatability of recrystallization we design is a reliable approach to further upgrading and industrial production

    Integrated System Built for Small-Molecule Semiconductors via High-Throughput Approaches

    Get PDF
    High-throughput synthesis of solution-processable structurally variable small-molecule semiconductors is both an opportunity and a challenge. A large number of diverse molecules provide a possibility for quick material discovery and machine learning based on experimental data. However, the diversity of the molecular structure leads to the complexity of molecular properties, such as solubility, polarity, and crystallinity, which poses great challenges to solution processing and purification. Here, we first report an integrated system for the high-throughput synthesis, purification, and characterization of molecules with a large variety. Based on the principle “Like dissolves like,” we combine theoretical calculations and a robotic platform to accelerate the purification of those molecules. With this platform, a material library containing 125 molecules and their optical-electronic properties was built within a timeframe of weeks. More importantly, the high repeatability of recrystallization we design is a reliable approach to further upgrading and industrial production

    A Novel SALL4/OCT4 Transcriptional Feedback Network for Pluripotency of Embryonic Stem Cells

    Get PDF
    Background: SALL4 is a member of the SALL gene family that encodes a group of putative developmental transcription factors. Murine Sall4 plays a critical role in maintaining embryonic stem cell (ES cell) pluripotency and self-renewal. We have shown that Sall4 activates Oct4 and is a master regulator in murine ES cells. Other SALL gene members, especially Sall1 and Sall3 are expressed in both murine and human ES cells, and deletions of these two genes in mice lead to perinatal death due to developmental defects. To date, little is known about the molecular mechanisms controlling the regulation of expressions of SALL4 or other SALL gene family members. Methodology/Principal Findings: This report describes a novel SALL4/OCT4 regulator feedback loop in ES cells in balancing the proper expression dosage of SALL4 and OCT4 for the maintenance of ESC stem cell properties. While we have observed that a positive feedback relationship is present between SALL4 and OCT4, the strong self-repression of SALL4 seems to be the “break” for this loop. In addition, we have shown that SALL4 can repress the promoters of other SALL family members, such as SALL1 and SALL3, which competes with the activation of these two genes by OCT4. Conclusions/Significance: Our findings, when taken together, indicate that SALL4 is a master regulator that controls its own expression and the expression of OCT4. SALL4 and OCT4 work antagonistically to balance the expressions of other SALL gene family members. This novel SALL4/OCT4 transcription regulation feedback loop should provide more insight into the mechanism of governing the “stemness” of ES cells

    Enhanced self-renewal of hematopoietic stem/progenitor cells mediated by the stem cell gene Sall4

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Sall4 is a key factor for the maintenance of pluripotency and self-renewal of embryonic stem cells (ESCs). Our previous studies have shown that Sall4 is a robust stimulator for human hematopoietic stem and progenitor cell (HSC/HPC) expansion. The purpose of the current study is to further evaluate how Sall4 may affect HSC/HPC activities in a murine system.</p> <p>Methods</p> <p>Lentiviral vectors expressing Sall4A or Sall4B isoform were used to transduce mouse bone marrow Lin-/Sca1+/c-Kit+ (LSK) cells and HSC/HPC self-renewal and differentiation were evaluated.</p> <p>Results</p> <p>Forced expression of Sall4 isoforms led to sustained <it>ex vivo </it>proliferation of LSK cells. In addition, Sall4 expanded HSC/HPCs exhibited increased <it>in vivo </it>repopulating abilities after bone marrow transplantation. These activities were associated with dramatic upregulation of multiple HSC/HPC regulatory genes including HoxB4, Notch1, Bmi1, Runx1, Meis1 and Nf-ya. Consistently, downregulation of endogenous Sall4 expression led to reduced LSK cell proliferation and accelerated cell differentiation. Moreover, in myeloid progenitor cells (32D), overexpression of Sall4 isoforms inhibited granulocytic differentiation and permitted expansion of undifferentiated cells with defined cytokines, consistent with the known functions of Sall4 in the ES cell system.</p> <p>Conclusion</p> <p>Sall4 is a potent regulator for HSC/HPC self-renewal, likely by increasing self-renewal activity and inhibiting differentiation. Our work provides further support that Sall4 manipulation may be a new model for expanding clinically transplantable stem cells.</p
    corecore