646 research outputs found

    How Disgust Builds Social Bonds

    Get PDF
    Though disgust is linked to a strong distancing reaction, we find that shared feelings of disgust can build social connections between consumers. In four studies, we show that although disgusted consumers do not seek affiliation with others, shared feelings of disgust lead to increased feelings of similarity and closeness nonetheless

    Ligand-induced monoubiquitination of BIK1 regulates plant immunity

    Get PDF
    The detection of microorganism-associated ligands by plant cells activates a signalling cascade in which the kinase BIK1 is monoubiquinated, released from the FLS2-BAK1 complex, and internalized by endocytosis. Recognition of microbe-associated molecular patterns (MAMPs) by pattern recognition receptors (PRRs) triggers the first line of inducible defence against invading pathogens(1-3). Receptor-like cytoplasmic kinases (RLCKs) are convergent regulators that associate with multiple PRRs in plants(4). The mechanisms that underlie the activation of RLCKs are unclear. Here we show that when MAMPs are detected, the RLCK BOTRYTIS-INDUCED KINASE 1 (BIK1) is monoubiquitinated following phosphorylation, then released from the flagellin receptor FLAGELLIN SENSING 2 (FLS2)-BRASSINOSTEROID INSENSITIVE 1-ASSOCIATED KINASE 1 (BAK1) complex, and internalized dynamically into endocytic compartments. The Arabidopsis E3 ubiquitin ligases RING-H2 FINGER A3A (RHA3A) and RHA3B mediate the monoubiquitination of BIK1, which is essential for the subsequent release of BIK1 from the FLS2-BAK1 complex and activation of immune signalling. Ligand-induced monoubiquitination and endosomal puncta of BIK1 exhibit spatial and temporal dynamics that are distinct from those of the PRR FLS2. Our study reveals the intertwined regulation of PRR-RLCK complex activation by protein phosphorylation and ubiquitination, and shows that ligand-induced monoubiquitination contributes to the release of BIK1 family RLCKs from the PRR complex and activation of PRR signalling

    Proteolytic processing of SERK3/BAK1 regulates plant immunity, development and cell death

    Get PDF
    Plants have evolved many receptor-like kinases (RLKs) to sense extrinsic and intrinsic cues. The signaling pathways mediated by multiple leucine-rich repeat (LRR) RLK (LRR-RLK) receptors require ligand-induced receptor-coreceptor heterodimerization and transphosphorylation with BAK1/SERK family LRR-RLKs. Here we reveal an additional layer of regulation of BAK1 via a Ca2+-dependent proteolytic cleavage process that is conserved in Arabidopsis thaliana, Nicotiana benthamiana and Saccharomyces cerevisiae . The proteolytic cleavage of BAK1 is intrinsically regulated in response to developmental cues and immune stimulation. The surface-exposed aspartic acid (D287) residue of BAK1 is critical for its proteolytic cleavage and plays an essential role in BAK1-regulated plant immunity, growth hormone brassinosteroid-mediated responses and cell death containment. BAK1D287A mutation impairs BAK1 phosphorylation on its substrate BIK1, and its plasma membrane (PM) localization. Intriguingly, it aggravates BAK1 overexpression-triggered cell death independent of BIK1, suggesting that maintaining homeostasis of BAK1 through a proteolytic process is crucial to control plant growth and immunity. Our data reveal that in addition to layered transphosphorylation in the receptor complexes, the proteolytic cleavage is an important regulatory process for the proper functions of the shared co-receptor BAK1 in diverse cellular signaling pathways

    SLAPex Freeze/Thaw 2015: The First Dedicated Soil Freeze/Thaw Airborne Campaign

    Get PDF
    Soil freezing and thawing is an important process in the terrestrial water, energy, and carbon cycles, marking the change between two very different hydraulic, thermal, and biological regimes. NASA's Soil Moisture Active/Passive (SMAP) mission includes a binary freeze/thaw data product. While there have been ground-based remote sensing field measurements observing soil freeze/thaw at the point scale, and airborne campaigns that observed some frozen soil areas (e.g., BOREAS), the recently-completed SLAPex Freeze/Thaw (F/T) campaign is the first airborne campaign dedicated solely to observing frozen/thawed soil with both passive and active microwave sensors and dedicated ground truth, in order to enable detailed process-level exploration of the remote sensing signatures and in situ soil conditions. SLAPex F/T utilized the Scanning L-band Active/Passive (SLAP) instrument, an airborne simulator of SMAP developed at NASA's Goddard Space Flight Center, and was conducted near Winnipeg, Manitoba, Canada, in October/November, 2015. Future soil moisture missions are also expected to include soil freeze/thaw products, and the loss of the radar on SMAP means that airborne radar-radiometer observations like those that SLAP provides are unique assets for freeze/thaw algorithm development. This paper will present an overview of SLAPex F/T, including descriptions of the site, airborne and ground-based remote sensing, ground truth, as well as preliminary results

    Analysis of Soil Freeze/Thaw Signatures During Slapex F/T Campaign

    Get PDF
    Permanently frozen and seasonally frozen soils occur over a large portion of the Earth's land surface. Changes in the freeze/thaw state of the land surface reflects major changes in thermal and hydraulic properties as well as acting as a "switch" for many ecological processes. In short, soil freeze/thaw state is a fundamental land surface variable in the water and energy cycles, and it connects to the carbon cycle. Surface freeze/thaw state is observable by passive and active microwave sensors. For example, NASA's Soil Moisture Active Passive (SMAP) mission includes a freeze/thaw data product. Such satellite sensing offers routine all-season and all-weather global observations of soil freeze/thaw state with the application of suitable algorithms. We describe early finding from the SLAPex Freeze/Thaw campaign, believed to be the first airborne campaign of its type, focusing on soil freeze/thaw
    • …
    corecore