7 research outputs found

    Magnetoconductivity of Hubbard bands induced in Silicon MOSFETs

    Full text link
    Sodium impurities are diffused electrically to the oxide-semiconductor interface of a silicon MOSFET to create an impurity band. At low temperature and at low electron density, the band is split into an upper and a lower sections under the influence of Coulomb interactions. We used magnetoconductivity measurements to provide evidence for the existence of Hubbard bands and determine the nature of the states in each band.Comment: In press in Physica

    Automated causal inference in application to randomized controlled clinical trials

    Get PDF
    Randomized controlled trials (RCTs) are considered the gold standard for testing causal hypotheses in the clinical domain; however, the investigation of prognostic variables of patient outcome in a hypothesized cause–effect route is not feasible using standard statistical methods. Here we propose a new automated causal inference method (AutoCI) built on the invariant causal prediction (ICP) framework for the causal reinterpretation of clinical trial data. Compared with existing methods, we show that the proposed AutoCI allows one to clearly determine the causal variables of two real-world RCTs of patients with endometrial cancer with mature outcome and extensive clinicopathological and molecular data. This is achieved via suppressing the causal probability of non-causal variables by a wide margin. In ablation studies, we further demonstrate that the assignment of causal probabilities by AutoCI remains consistent in the presence of confounders. In conclusion, these results confirm the robustness and feasibility of AutoCI for future applications in real-world clinical analysis

    Automated causal inference in application to randomized controlled clinical trials

    No full text
    Randomized controlled trials (RCTs) are considered the gold standard for testing causal hypotheses in the clinical domain; however, the investigation of prognostic variables of patient outcome in a hypothesized cause–effect route is not feasible using standard statistical methods. Here we propose a new automated causal inference method (AutoCI) built on the invariant causal prediction (ICP) framework for the causal reinterpretation of clinical trial data. Compared with existing methods, we show that the proposed AutoCI allows one to clearly determine the causal variables of two real-world RCTs of patients with endometrial cancer with mature outcome and extensive clinicopathological and molecular data. This is achieved via suppressing the causal probability of non-causal variables by a wide margin. In ablation studies, we further demonstrate that the assignment of causal probabilities by AutoCI remains consistent in the presence of confounders. In conclusion, these results confirm the robustness and feasibility of AutoCI for future applications in real-world clinical analysis

    Prognostic impact and causality of age on oncological outcomes in women with endometrial cancer:a multimethod analysis of the randomised PORTEC-1, PORTEC-2, and PORTEC-3 trials

    No full text
    Background: Numerous studies have shown that older women with endometrial cancer have a higher risk of recurrence and cancer-related death. However, it remains unclear whether older age is a causal prognostic factor, or whether other risk factors become increasingly common with age. We aimed to address this question with a unique multimethod study design using state-of-the-art statistical and causal inference techniques on datasets of three large, randomised trials. Methods: In this multimethod analysis, data from 1801 women participating in the randomised PORTEC-1, PORTEC-2, and PORTEC-3 trials were used for statistical analyses and causal inference. The cohort included 714 patients with intermediate-risk endometrial cancer, 427 patients with high-intermediate risk endometrial cancer, and 660 patients with high-risk endometrial cancer. Associations of age with clinicopathological and molecular features were analysed using non-parametric tests. Multivariable competing risk analyses were performed to determine the independent prognostic value of age. To analyse age as a causal prognostic variable, a deep learning causal inference model called AutoCI was used. Findings: Median follow-up as estimated using the reversed Kaplan-Meier method was 12·3 years (95% CI 11·9–12·6) for PORTEC-1, 10·5 years (10·2–10·7) for PORTEC-2, and 6·1 years (5·9–6·3) for PORTEC-3. Both overall recurrence and endometrial cancer-specific death significantly increased with age. Moreover, older women had a higher frequency of deep myometrial invasion, serous tumour histology, and p53-abnormal tumours. Age was an independent risk factor for both overall recurrence (hazard ratio [HR] 1·02 per year, 95% CI 1·01–1·04; p=0·0012) and endometrial cancer-specific death (HR 1·03 per year, 1·01–1·05; p=0·0012) and was identified as a significant causal variable. Interpretation: This study showed that advanced age was associated with more aggressive tumour features in women with endometrial cancer, and was independently and causally related to worse oncological outcomes. Therefore, our findings suggest that older women with endometrial cancer should not be excluded from diagnostic assessments, molecular testing, and adjuvant therapy based on their age alone. Funding: None.</p
    corecore