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Many clinical studies are driven by the research questions 
that are statistical at first glance but causal by nature1. For 
instance2, how safe and efficient is a vaccine against viral 

infection? How are clinicopathological variables3 related to cancer 
patient survival? From the causal perspective, the common ground 
of these problems starts with determining the causal variables of 
the outcome of interest. In clinical medicine, randomized controlled 
trials (RCTs) are considered to be the gold standard to investigate 
cause–effect relationships4. In a prototypical RCT, a participant is 
randomly assigned to the experimental or control arm and the out-
come of interest is observed. In the context of causal inference, such 
a randomization can be modelled with do-intervention5.

In this Article, we develop a new automated causal inference 
method (AutoCI) and apply this to two large-scale, practice-changing 
RCTs of patients with endometrial carcinoma conducted in the 
Netherlands from 1990–1997 (PORTEC 1; refs. 6,7) and 2002–2006 
(PORTEC 2; refs. 8,9), with full clinicopathological datasets and 
mature outcome data. Endometrial carcinoma is the most common 
type of gynaecological cancer for women in developed countries10. 
The majority of women that are diagnosed with early stage endome-
trial cancer (EC) have a favourable prognosis and are treated with 
surgery11. Approximately 15–20% of patients have an unfavourable 
prognosis with a high risk of distant metastasis11. For those patients, 
different adjuvant therapies such as vaginal brachytherapy, external 
beam radiotherapy and chemoradiation are recommended on the 
basis of their risk group12. The two trials (PORTEC 1 and 2) used 
in this study made a key contribution to clinical practice by inves-
tigating how these therapies impact the risk of recurrence rates and 
survival6,8. According to the latest ESGO/ESTRO/ESP guidelines12 

for the management of patients with endometrial carcinoma, the 
risk classification is based on a series of clinical and pathological 
variables such as tumour grading (Grade), lymphovascular space 
invasion (LVSI), myometrial invasion and so on, as well as molecu-
lar variables including—but not limited to—polymerase epsilon 
mutant EC (POLEmut), mismatch repair deficient (MMRd) EC, 
p53 abnormal EC (p53abn) and EC with no specific molecular pro-
file (NSMP)12. Correlative statistical methods were used in a recent 
study3 to investigate the hazardous relevance of these variables to EC 
recurrence. There is strong evidence to suggest that these variables 
impact EC recurrence, but a systematic investigation to support this 
understanding from a modern causal inference perspective has not 
been performed.

Causal inference addresses the determination of cause–effect 
relationships from data13–16. When given either observational data 
or the inclusion of additional interventional data, clinical studies 
aim to either (1) quantify the causal effect of a treatment given the 
outcome13 or (2) infer the underlying causal structure of relation-
ships between patient and treatment characteristics and relevant 
outcomes5,17.

The former can be well formulated as the difference between the 
outcome expectations conditioned on different treatments (average 
causal effect)13. A wide range of studies have built on this methodol-
ogy, including—but not limited to—target trial specification18, tar-
get trial emulation19,20 and extending inferences from randomized 
trials to new target populations21.

In comparison to the causal effect identification, we refer to (2) 
as (causal) structure identification5. The goal of structure identifica-
tion is often to learn the entire causal structure, that is, a directed 
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acyclic graph composed of nodes and edges that connect nodes; 
however, this is generally a non-deterministic polynomial-time 
hard problem16,22. To learn the cause–effect relations without infer-
ring the entire causal structure, invariant causal prediction (ICP)23 
was proposed to determine the set of causal variables given an 
outcome variable. Under the ICP framework, we use the random 
variable concept (informally, a function that assigns a set of pos-
sible samples to a measurable quantity) and define causal variable as 
follows (see Supplementary Table 1 for summarized terminologies 
used in the paper).

Definition 1. Assume there exists a set of environments u ∈ U, given 
a collection of random variables X = (X1, X2, …, Xn) and an outcome 
variable Y, if XS∗ = (XS∗1 ,…, XS∗j ) exists with indices S* ⊆ {1, …, n} 
such that

Y = f∗(Xu
S∗) + δu ∀u ∈ U, where f∗ : R|S∗|

�→ R. (1)

δu are
{

identically distributed (i.d.) if ∃ hidden confounders

i.d. and δu ⊥⊥ Xu
S∗ else

(2)

Then XS∗ are the plausible causal variables (under U). Here, 
Xu
S∗ = (Xu

S∗1
,…, Xu

S∗j
) are the corresponding random variables to 

XS∗ = (XS∗1 ,…, XS∗j ) created under the environment u. For exam-
ple, the (experimental) environment u can arise via do-intervention17 
(do(X0 ≔ c)) on X0, then Xu

0 only samples the fixed value c. It is worth 
noting that the cause–effect relation f∗ in equation (1) stays invariant 
and independent of U. Next we introduce the definition of identifiable 
causal variables.
Definition 2. Following the specification of U, X = (X1, X2, …, Xn) 
and Y in Definition 1, if a XS̄ = (XS̄1 ,…, XS̄j) exists with indices 
S̄ ⊆ {1,…, n} such that

S̄ :=
∩

{S ⊆ {1,…, n}| XS are plausible causal variables }, (3)

then XS̄ are the identifiable causal variables (under U), as they are 
referred to henceforth.

Vanilla ICP23 was initially presented and verified on linear cause–
effect relations. Heinze-Deml and co-workers24 next defined u as a 
random variable that is neither the descendant nor the parent of Y, 
and conducted multiple conditional independence tests on nonlinear 
cause–effect settings (NICP). Gamella and Heinze-Deml25 recently 
suggested investigating the stable set of variables instead, which is a re-
laxation of the set of identifiable causal variables (AICP). This progress 
in ICP has opened unprecedented paths to interpret complex data-
sets, especially those collected from RCTs. Finding which variables 
determine whether a treatment works or whether a patient will have a 
recurrence using ICP methods has great scientific potential. In appli-
cation to the clinical domain, data interpretation by causal inference 
methods could improve our understanding of disease and aid in the 
design of new experiments and clinical trials; however, non-negligible 
efforts are required to adopt the existing ICPs to the clinical domain. 
This is due to: (1) the complexity and multitude of variables that are 
considered relevant for treatment outcomes including patient level 
characteristics (patient demographics, text data from clinical records), 
information derived from images (radiology, pathology) and molecu-
lar data (genomic sequencing); and (2) the incompatibility between 
the error-tolerant implementation for the simulated dataset and 
safe-critical application relevant for medical decisions. Candidate ICP 
methods therefore need to be robust against noise and need to pro-
vide meaningful outputs that can be related to clinical risk in order to  
inform patient stratification.

Results
Clinical variables overview. The PORTEC 1 and 2 trials6,8 recruited 
714 (since 1990–1997) and 427 (since 2000–2006) patients with 
early stage endometrial carcinoma respectively; 305 cases from 
PORTEC 1 (42.7%) and 335 cases from PORTEC 2 (78.5%) with 
complete clinicopathological datasets were aligned and used in the 
experiments. Clinicopathologic characteristics of these subgroups 
were similar to the original trial populations (less than or equal to 
17.3% absolute difference in frequency of any variable). Importantly, 
there was no substantial difference in the variable of interest (mean 
and five-year recurrence free survival (RFS)) for causal variable 

Table 1 | The comparison of causal variable determination for 
the PORTEC dataset among ICP, NICP and the proposed method

ICP NICP Proposed 
(warm-up)

Proposed 
(complete)

Causal determination of P

 Pathological

  Myometrial invasion No Yes 55.33% 52.13%

  Grade No Yes 62.72% 60.71%

  LVSI No Yes 60.68% 59.41%

 Sanity check

  Tissue area No Yes 49.31% 35.96%

  Patient ID No Yes 50.93% 20.61%

Causal determination of PM

 Pathological

  Myometrial invasion No Yes 54.62% 53.16%

  Grade No Yes 60.44% 60.42%

  LVSI No Yes 62.13% 60.87%

 Molecular

  L1CAM No Yes 60.27% 60.43%

  POLEmut No Yes 49.91% 50.02%

  MMRd No Yes 49.20% 49.25%

  p53abn No Yes 64.67% 63.92%

 Sanity check

  Tissue area No Yes 49.77% 24.94%

  Patient ID No Yes 48.98% 17.48%

Causal determination of PMI

 Pathological

  Myometrial invasion No Yes 55.22% 53.84%

  Grade No Yes 59.39% 59.74%

  LVSI No Yes 61.88% 60.56%

 Molecular

  L1CAM No Yes 59.91% 59.92%

  POLEmut No Yes 50.08% 50.46%

  MMRd No Yes 49.10% 49.40%

  p53abn No Yes 63.82% 62.91%

 Immune

  CD8+ cell density No Yes 56.33% 56.14%

 Sanity check

  Tissue area No Yes 49.58% 21.12%

  Patient ID No Yes 49.18% 22.89%

The causal variable determination of pathological variables (P), pathological and molecular 
variables (PM), and pathological, molecular and immune variables (PMI). Here, we report yes 
(causal) or no (non-causal) for ICPs and causal probability for the proposed AutoCI. The proposed 
(warm-up) refers to steps 1 and 2 of the pseudo code in Fig. 1.
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identification between the excluded and included patient datasets, 
supporting that our analysis is representative of the overall study 
population (Supplementary Fig. 1 and Supplementary Tables 2 and 
3). Considering PORTEC 1 and 2 as the two experimental environ-
ments, we aimed to determine the causal pathological, molecular 
and immune-related variables of EC recurrence status.

Pathological variables. Pathological criteria tumour grading 
(Grade)26,27, LVSI28 and myometrial invasion26,27 are examined in the 
study, all of which are important indicators for an elevated risk of 
EC recurrence (see also ref. 12). All variables were reevaluated on 
formalin-fixed paraffin-embedded tumour material by specialized 
gynecopathologists to guarantee variable consistency for the two 
environments (trials).

Molecular variables. The molecular classification of EC distinguishes 
four subtypes with validated prognostic impact: (1) ultra-mutated 
EC with DNA-polymerase epsilon exonuclease domain mutations 
(POLEmut), with an excellent prognosis; (2) hypermutated EC with 
MMRd, with an intermediate prognosis; (3) copy-number-high 
EC with frequent TP53 mutations (p53abn), with an unfavourable 
prognosis; and (4) copy-number-low EC without an NSMP, with 
an intermediate prognosis27,29. Pathogenic POLE mutations were 
detected by next-generation sequencing of POLE hotspot exons30. 
Mismatch repair deficient (MMRd) EC and p53 status were deter-
mined by immunohistochemistry31. Cases with more than one clas-
sifying feature were classified according to the dominant molecular 
feature on the basis of pathogenicity32. Over-expression of L1CAM 
by tumour cells was assessed by immunohistochemistry using a 

cut-off of ≥10% for positivity, and is associated with an increased 
risk of metastasis and death33,34.

Immune variable. (Intraepithelial) CD8+ T-cell infiltration is 
an independent favourable prognostic indicator in early stage 
EC3. To quantify CD8+ T-cell infiltration in tissue samples of the 
PORTEC 1 and 2 trials, we compute CD8+ cell density derived 
from tissue microarrays by immunohistochemistry and image  
analysis3,35. Specifically, tissue microarrays capture cancer tis-
sue samples from each patient in a highly standardized man-
ner, allowing for the highly accurate evaluation of tumour and 
microenvironment-related factors in cancer samples for investiga-
tion with clinical outcomes36.

Based on existing domain knowledge and biological understand-
ing3,29,31,37–39, we consider the pathological (P), molecular (M) and 
immune (I) variables to be the proxies of causal variables (Sprox) (see 
Supplementary Table 3 for more characteristics details).

Sanity-check variables. To investigate the robustness of the causal 
inference models, we intentionally include a randomized number 
as the Patient ID and the vital tissue area of each tissue microarray 
core (where the tissue area is the sum of randomly sampled tumour 
and stroma areas from each case) in our subsequent analysis as 
non-causal variables. Based on prior domain knowledge, the two 
variables should not be causally related to cancer outcomes. The 
inclusion of these two non-causal variables thus serves as an impor-
tant benchmark for comparison of the methods presented in this 
study. Importantly, as the two variables are expected not to impact 
clinical outcome and we attempt to verify that they do not impact 
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f0 = CAT(MAP(NN))

[ (Clinical data, RFS) ∈ PORTEC 1, (Clinical data, RFS) ∈ PORTEC 2]

1  Learn fi(;θ) for n epochs
2  Save θmin with the minimum  mFIDmin
3  init fi = fi(;θmin), θsota = θmin
4  for _ in range(num_variables):
5     Mask a undecided variable ν
6     for i in range(2):
7        Learn fi(;θ) for one epoch
8        if mFidcur < λ (1−FILTERθmin

(ν))√mFIDmin:
9           ν is non-causal
10         save the current θ → θSOTA11         break
12      if i == 1:
13        ν is causal
14        Restore the saved θSOTA → fi
15  Output the causal prob. in FILTER

…

…

f1 = COMP(NN,
CAT(FILTER(PRED))

fk = CAT(COMP(CONV(NN),
CAT(FILTER(PRED)))

ATM:: = bool ∣ real ∣ int
FUC:: = ADT ∣ F1 → F2
ADT:: = TT ∣ list(TT)

TT:: = tensor(ATM)[m1][m2]...[mk]

NN:: = MLP ∣ ... ∣ RNN ∣ CNN
PRED:: = cau ∣ ADT → bool
prg:: = NN ∣ COMP(prg0, prg1)

CAT(prg) ∣ REPEAT(int, prg) ∣
MAP(prg)
FOLD(prg) ∣ CONV(prg) ∣
FILTER(PRED)

…

Fig. 1 | The overall model illustration and performance of the proposed AutoCI. Top: an illustrative scheme of the proposed AutoCI. In the syntax (top 
left), the type T includes atomic type (ATM), function type (FUC) and abstract data type (ADT), the program prg contains neural network (NN), function 
composition (COMP), concatenation (CAT), filter (FILTER), predicate (PRED) and so on. In the causal differentiable learning, causal prob. indicates causal 
probability. The outcome variable RFS means recurrence free survival. Bottom left: the sampled numbers of type-safe functions versus generic functions. 
Here the size is the maximum amount of nn and PRED functions allowed during the program synthesis. Bottom middle: the learning curve of the JS for 
top-four type-safe functions achieved in the case with pathological, molecular and immune variables. Bottom right: the running time of determining the 
causal variables for P, PM and PMI. Here the proposed AutoCI utilizes the function COMP(NN, CAT(FILTER(PRED))).
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the outcome, this strategy can also be considered as a typical use 
case of negative control40 in RCT studies.

PORTEC experiments overview. As presented in Fig. 1 (top), our 
proposed AutoCI is composed of two key components: (1) a pro-
gram synthesis language that searches the type-safe function can-
didates automatically, and (2) a novel causal differentiable learning 
scheme that determines the causal variables. In the following we 
first present the experimental results with emphasis on the individ-
ual components (1) and (2). We then demonstrate the overall per-
formance on the main and ablation studies for the complete AutoCI 
method, confirming that the integration of program synthesis with 
a causal differentiable learning scheme is a critical step towards 
automated causal inference for clinical applications.

Automated type-safe function search. Type-safe functions are 
favourable candidates to strengthen the security and reliability 
of critical software applications41. However, the manual verifica-
tion of type-safe properties can be cumbersome, especially when 
examining thousands of function candidates. Figure 1 (bottom left) 
shows that the AutoCI can efficiently filter out a subset of prom-
ising type-safe differentiable functions (see also similar results in 
ref. 42), and this can be accomplished in a short period of time: 
42.26 s, 118.56 s, 119.44 s for size = {3, 4, 5}. By automatically exclud-
ing a large amount of generic functions that are not type-safe, it 
can greatly improve the development efficiency and algorithm 
safety compared with manual function design. After obtaining the 
type-safe candidates, we execute the causal differentiable learning 
scheme (Fig. 1, top) on the candidates and determine the set of pre-
dicted causal variables SPRED. Here we utilize the Jaccard similarity 
(JS)25 as a key metric to measure the prediction accuracy,

JS(Spred, Sprox) =
|Spred ∩ Sprox|
|Spred ∪ Sprox|

(4)

Figure 1 (bottom middle) demonstrates the JS accuracy with 
the growing epochs for the top-four type-safe candidates (see 
also Supplementary Table 4). We conclude that the function  
f = COMP(NN, CAT(FILTER(PRED)))))) achieves the optimal JS 
score (for example, 91.9 ± 0.06%) and thus is used as the default func-
tion for further analysis. As pointed out in Valkov et al.42, HOUDINI 
allows us to transfer high-level modules across learning tasks. More 
specifically, the type-safe candidates discovered via the search algo-
rithm are agnostic of disease-specific features for hazard analysis. 

Independent of the hazard analysis conducted for cancer studies, 
these type-safe candidates can therefore be re-used and fine-tuned 
to perform causal variable identification given data on the survival 
outcome for each patient. Depending on the JS score achieved by the 
candidates we determine the optimal learned type-safe model. As a 
result, the proposed AutoCI approach can pave the way towards an 
efficient causal analysis for many of the real-world cancer studies.

Determining causal variables with clear differentiation. We compare 
the AutoCI with the state-of-the-art ICP methods, ICP and NICP. 
Although competitive results are achieved by AICP on the toy exper-
iments, AICP requires the regeneration of additional interventional 
data in each learning step. Such a learning scheme is incompatible 
to the real-world RCTs setting, hence AICP is not applicable to the 
PORTEC experiments. As ICP and NICP explicitly accept or reject 
the variable of interest, we report yes or no in Table 1. For the pro-
posed AutoCI, we report the mean of the causal probabilities for 
each variable. Overall, the proposed AutoCI outperforms the ICP 
and NICP in terms of differentiating causal and non-causal variables 
(≥50% versus <25% for PMI), demonstrating its advantages over the 
SOTA methods by a clear margin (Table 1). When examining the 
individual variables of interest, we can see that ICP fails to determine 
the proxy variables to be the causal ones, whereas for NICP all of 
the variables—including the sanity check ones—are considered to be 
causal. These results clearly contrast to the methodological compari-
sons of the ICP methods on the toy data (Fig. 2), which respect the 
normal distributions. If we decompose the proposed causal learning 
scheme, we witness the suppression of the causal probability on the 
sanity-check variables over the warm-up stage (steps 1 and 2 of the 
pseudo code in Fig. 1), whereas the causal variables do not show 
deterioration of performance. This clear differentiation of causal and 
non-causal variables can aid the definition of meaningful cut-offs by 
AutoCI on a given cohort guided by clinical expertise.

Hazard analysis of the individual variables. In parallel to the causal 
variable determination, the corresponding HR analysis on EC recur-
rence is also performed. In the scenario in which unknown spuri-
ous (non-causal) variables are included in the hazard analysis, the 
causal cut-off can help reducing the noise introduced by non-causal 
variables. For instance, Table 2 reports the decreased hazard of tis-
sue area (0.90; 0.88–0.92), Patient ID (0.92; 0.91–0.94) achieved in 
the warm-up stage for PMI case. Without causal analysis, one may 
falsely conclude that larger tissue area leads to a slightly lower risk 
of cancer recurrence. Besides, the HR achieved within the warm-up 
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Fig. 2 | The learning performance and time of the optimal type-safe f = COMP(NN, CAT(FILTER(PRED))) on toy datasets. Left: the learning 
curve of the JS for top-four type-safe functions (finite sample setting). Middle: the learning curve of the JS for top-four type-safe functions (ABCD 
setting). Right: the running time of the compared methods for the finite sample and ABCD settings. Here the proposed AutoCI utilizes the function 
COMP(NN, CAT(FILTER(PRED))).
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and complete learning stage remains stable and consistent to the 
standard clinical interpretation, that is, the values assigned to the 
variable indeed correctly correspond to either poor or favourable 
outcomes. This learning scheme can therefore help delivering reli-
able outputs that are understandable for clinical experts.

Ablation study with hidden confounders. To elaborate the robust-
ness of AutoCI, we conducted ablation studies with the influence of 
confounding. This is achieved by step-wise inclusion of P and PM. 
As shown in Tables 1 and 2, the proposed AutoCI presents consis-
tent advantages over the existing ICP methods in terms of learning 

meaningful causal probabilities for both non-causal and causal vari-
ables. For instance, the tissue area and Patient ID are determined to 
be 35.96% and 20.61% for P, and 24.94% and 17.48% for PM, respec-
tively, whereas the causal probabilities of all of the proxy variables 
remain close to or above 50%. In the hazard analysis, the results 
of the confounding studies P and PM are also consistent with the 
results reported for the main study (PMI). For instance, L1CAM 
and p53abn are assigned with increased hazards for PM and PMI, 
indicating a poor prognostic outcome. These results are in agree-
ment with clinical understanding27,29,33. The numerical improve-
ments from P to PMI in the accuracy of probabilistic predictions 

Table 2 | The comparison of causal variable determination for the PORTEC dataset among ICP, NICP and the proposed method

Proposed (warm-up) Proposed (complete)

Causal prob. HR (95% CI) P value Causal prob. HR (95% CI) P value

Hazard analysis of P

 Pathological

  Myometrial invasion 55.33% 1.21 (1.17–1.25) 0 52.13% 1.26 (1.21–1.31) 0

  Grade 62.72% 1.45 (1.36–1.55) 0 60.71% 1.62 (1.51–1.74) 0

  LVSI 60.68% 1.33 (1.26–1.41) 0 59.41% 1.48 (1.39–1.57) 0

 Sanity check

  Tissue area 49.31% 0.93 (0.92–0.95) 2.01 × 10–9 35.96% NA NA

  Patient ID 50.93% 0.97 (0.96–0.98) 6.05 × 10–16 20.61% NA NA

Hazard analysis of PM

 Pathological

  Myometrial invasion 54.62% 1.34 (1.29–1.39) 0 53.16% 1.43 (1.39–1.48) 0

  Grade 60.44% 2.08 (1.95–2.21) 0 60.42% 2.46 (2.33–2.59) 0

  LVSI 62.13% 2.01 (1.87–2.16) 0 60.87% 2.44 (2.30–2.60) 0

 Molecular

  L1CAM 60.27% 2.00 (1.88–2.12) 0 60.43% 2.33 (2.21–2.45) 0

  POLEmut 49.91% 0.94 (0.93–0.96) 4.68 × 10–10 50.02% 0.94 (0.92–0.95) 1.08 × 10–12

  MMRd 49.20% 0.99 (0.98–1.00) 0.18 49.25% 0.99 (0.98–1.01) 0.31

  p53abn 64.67% 2.61 (2.41–2.84) 0 63.92% 3.22 (3.00–3.46) 0

 Sanity check

  Tissue area 49.77% 0.89 (0.88–0.91) 0 24.94% NA NA

  Patient ID 48.98% 0.92 (0.91–0.94) 0 17.48% NA NA

Hazard analysis of PMI

 Pathological

  Myometrial invasion 55.22% 1.40 (1.34–1.45) 0 53.84% 1.46 (1.41–1.52) 0

  Grade 59.39% 1.97 (1.87–2.08) 0 59.74% 2.22 (2.11–2.34) 0

  LVSI 61.88% 2.04 (1.89–2.19) 0 60.56% 2.35 (2.20–2.51) 0

 Molecular

  L1CAM 59.91% 1.97 (1.87–2.08) 0 59.92% 2.16 (2.06–2.26) 0

  POLEmut 50.08% 0.89 (0.88–0.91) 0 50.46% 0.89 (0.88–0.91) 0

  MMRd 49.10% 1.02 (1.01–1.04) 0.0004 49.40% 1.05 (1.04–1.07) 6.90 × 10–12

  p53abn 63.82% 2.65 (2.44–2.87) 0 62.91% 3.01 (2.80–3.22) 0

 Immune

  CD8+ cell density 56.33% 0.64 (0.61–0.66) 0 56.14% 0.59 (0.57–0.61) 0

 Sanity check

  Tissue area 49.58% 0.90 (0.88–0.92) 0 21.12% NA NA

  Patient ID 49.18% 0.92 (0.91–0.94) 0 22.89% NA NA

The hazard analysis including hazard ratios (HRs), 95% confidence intervals (CIs) and P values for P, PM and PMI, where the P value is computed from the χ2 test. The proposed (warm-up) refers to steps 1 
and 2 of the pseudo code in Fig. 1.
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(Fig. 3) provide complementary evidence confirming the robust-
ness of AutoCI. When compared with the warm-up stage of AutoCI, 
we further observe a reduction in variance in the evaluation of the 
complete causal-aware AutoCI. Finally, the running time of the P, 
PM and PMI studies grows only mildly for the proposed method, 
in contrast to the dramatic increase in time complexity for ICP 
and NICP, where the bottleneck of the ICPs lies in the exponential 
increase o(2∣S∣) in search space with the growing number of variables 
S (equation (3)).

Discussion
In this study, we proposed a novel automated causal inference algo-
rithm (AutoCI). Taking two large RCTs as the experimental environ-
ments, we reinterpret the clinical variables of interest from a causal 
perspective. The proposed AutoCI demonstrates consistent advan-
tages compared with existing ICP methods in determining causal 
variables with the presence of hidden confounders. Complementary 
to the standard hazard analysis, AutoCI provides an automatic tool 
for medical data analysis to investigate causal association of patient 
variables from a new perspective, offering informative and critical 
evidence to support clinical interpretation. Specifically, the accu-
rate determination and exclusion of the spurious (non-causal) 
variables is a key step to enable more precise patient stratification  
in the future.

Design choices of AutoCI. Dissimilar to generic algorithms, 
clinical algorithms must deal with unique challenges in terms of 
ensuring the safety43 and robustness. Error-prone algorithms can 
potentially lead to critical errors in medical care. Driven by the need 
to develop safe-critical applications, AutoCI is carried out with a 
type-safe program synthesis method42. By further incorporating a 
newly proposed causal-aware module into this framework, we are 
able to synthesize a subset of differentiable type-safe candidates well 
suited for causal-aware learning. Compared to the laborious and 
error-prone manual function design, this implementation improves 
the efficiency and safety of AutoCI. Moreover, to achieve the robust-
ness on the real clinical tasks, we introduce a novel causal differen-
tiable learning scheme that utilizes the Fréchet inception distance 
(FID)44. As a whole, the proposed AutoCI is the seamless integration 
of both components.

Comparison with existing ICPs. Application of the prior ICP 
methods has confirmed the feasibility of causal variable learning 
on toy experiments (Table 3 and Fig. 2). This is substantiated by 
the outstanding results in the absence of confounders; however, the 
error-tolerant implementations of prior ICPs on the synthesized  

experiments are not well-tailored for real clinical applications, 
especially in the presence of hidden confounders. Compared with 
ICP, AICP and NICP, AutoCI presents robust results on both toy 
and PORTEC experiments. With the inclusion of confounders, 
AutoCI demonstrated a robust differentiation between causal and 
non-causal variables for PORTEC, and achieves superior quantita-
tive scores on both the finite sample and ABCD settings.

Clinical interpretations. Importantly, the hazard analysis and  
ranking of clinicopathological and molecular variables using 
AutoCI (Table 1) is generally consistent with the common biologi-
cal and clinical interpretation. Taking pathological variables as an 
example, studies26–28 indeed show that grade, deep myometrial inva-
sion and LVSI are important independent predictors of early EC 
recurrence. The causal probabilities provided by AutoCI thereby 
give additional information on the relevance of each variable for 
the determination of outcome, and the likelihood of each variable is 
consistent with domain expertise. Lymphovascular space invasion 
is considered to be a critical predictor independent of molecular 
subgroup and is ranked with the highest causal probability, while 

0.585 0.614 0.643 0.672 0.701 0.73 0.08 0.085 0.09 0.095 0.1 0.105 0.29 0.302 0.314 0.326 0.338 0.35

P

PM

PMI

Proposed (warm-up) Proposed (complete)

Concordance index Brier score Binomial log-likelihood

Fig. 3 | The evaluation metrics of hazard analysis conducted on the PORTEC dataset. Box plots of the concordance index (left), Brier score (middle), and 
the binomial log-likelihood (right) that are derived from n = 640 patients included in the PORTEC dataset, where the box bounds the interquartile range 
(IQR) divided by the median, and whiskers extend to ±1.5 × IQR beyond the box.

Table 3 | The comparison of causal variable determination for 
the toy datasets between ICPs and the proposed method

Finite sample settinga

JS (FWER)

Two confounders One confounder Zero confounders

ICP 0.332 (0.98) 0.382 (0.85) 1.00 (0.00)

NICP 0.333 (0.98) 0.384 (0.85) 1.00 (0.00)

AICP 0.439 (0.05) 0.483 (0.11) 0.998 (0.0004)

Proposed 0.911 (0.13) 0.923 (0.14) 0.994 (0.006)

ABCD settingb

JS (FWER)

Two confounders One confounder Zero confounders

ICP 0.517 (0.61) 0.559 (0.51) 0.976 (0.00)

NICP 0.512 (0.69) 0.558 (0.57) 0.992 (0.002)

AICP 0.417 (0.12) 0.437 (0.18) 0.991 (0.01)

Proposed 0.922 (0.08) 0.928 (0.12) 0.985 (0.02)
aThe results of the compared methods for the finite sample setting. bThe results of the compared 
methods for the ABCD setting.
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grade and myometrial invasion are indeed weaker but independent 
prognostic indicators.

Furthermore, AutoCI correctly identifies the prognostic asso-
ciations of the molecular variables of EC, assigns the appropriate 
hazards for outcome and ranks the molecular subgroups in the 
order of causal probability that would be expected by an expert’s 
domain knowledge. Specifically, the molecular factors with the 
highest adverse risk, p53 abnormality (3.01 (PMI), 3.22 (PM)) and 
L1CAM over-expression (2.16 (PMI), 2.33 (PM))33 are recognized 
as such, whereas the POLEmut is consistently associated with a 
reduced risk of disease relapse as confirmed in previous studies30. 
Adding an immune variable further refines the model, as expected 
by domain expertise3, and highlights a causal relationship between 
cytotoxic T-cell responses and EC recurrence in early stage EC. In 
summary, AutoCI correctly quantifies and ranks causal pathologi-
cal, molecular and immune variables for patient outcomes in the  
clinical trial setting.

Going beyond academic toy models, the proposed AutoCI extends 
the researchers current statistical toolbox with a new causal-driven 
method that can assign the causal likelihood to prognostic and pre-
dictive variables. As such, this method will enable identification of 
clinically relevant variables among the ever-increasing number of 
biomarkers in cancer research that show statistical correlation with 
clinical outcome. Hence, although the direct real-world application 
of this method is primarily scientific, subsequent clinical validation 
and development may enable better selection of (bio)markers to 
stratify patients for cancer treatments and prediction of prognosis.

Limitation
Despite the clear cut-off between non-causal and proxy variables 
provided by AutoCI, some of the proxy variables present borderline 
hazard ratios, for instance, MMRd. Due to small effect size, clini-
cal studies45,46 usually associate MMRd with intermediate patient 
prognosis, not much different from the prognosis of NSMP EC; 
however, from the biological perspective, MMRd is highly relevant 
for a well-defined cascade of molecular changes in cancer cells 
with favourable prognostic impact as proven by a large number 
of well-designed experimental and translational studies31,47. The 
loss of DNA mismatch repair capability in cancer cells leads to a 
strong increase in tumour mutational burden caused by mismatch, 
frameshift and insertion/deletion mutations. Due to the structure 
of eucaryotic DNA, frameshift mutations frequently lead to the 
translation of truncated peptides that are highly immunogenic, and 
contribute to the induction of an effective anti-tumoral immune 
response47. Consistent with biological understanding, AutoCI iden-
tifies MMRd as causally related to outcome in the present study, 
although the lack of a strong association with EC recurrence 
requires further investigation.

Conclusion
In this study we investigate the causal variable determination among 
multiple RCTs and present its advantages over the compared meth-
ods on both toy and PORTEC experiments. For clinical application, 
further validation of this methodology in independent clinical trial 
datasets will be needed to ensure generalisation.

Methods
As per the AutoCI abbreviation, automated and causal are the two building blocks 
of the proposed method. Concretely, the automation component is implemented 
with a type-safe program synthesis language HOUDINI42. We also introduce a 
novel differentiable causal learning scheme that is built up ICP.

Type-safe program synthesis. HOUDINI42 is a typed language with a rich set 
of pythonic higher-order functions such as MAP, FOLD, COMP (Pythonic: 
map(), reduce(), lambda x: f(g(x))) and so on (Fig. 1, top left). Relying on the 
built-in method for program search, it allows us to efficiently search promising 
type-safe differentiable program candidates. Compared with other program 
synthesis languages48–51, HOUDINI rules out the error-prone functions that 

undermine the software safety and presents itself as an ideal candidate for our task 
(see Supplementary Table 5 for further comparison).

Despite of rich built-in functions provided by the HOUDINI, it lacks 
an explicit flow control mechanism. Driven by the need of integrating the 
causal-aware learning, we introduce the predicate module (PRED) containing the 
function (cau) (see also Fig. 1, top left)

cau(x;θ) = mask ⊙ sigmoid(θ) ⊙ x, (5)

where θ represents the learnable weights (normalized by sigmoid), ⊙ is the 
element-wise multiplication, mask is the vector containing 0 or 1 manipulated in 
step 5 of Fig. 1 (top), mask ⊙ sigmoid(θ) presents the causal probability for each 
variable. Together with the newly introduced higher-order function FILTER, we are 
able to synthesize type-safe causal-aware programs.

Causal differentiable learning. In Definition 1, the ICP does not make 
assumptions about the function f∗ (equation (1)). In real-world applications, it is 
reasonable to specify the search space of f∗. If we assume that f∗ is differentiable, 
then we have a trivial extension:

f : Rn
�→ R

Xi0 , …, Xi
|S∗|

︸ ︷︷ ︸

XS∗

, Xi
|S∗|+1

, …, Xin
︸ ︷︷ ︸

XS∗c

→ f∗(XS∗ ), ∀u ∈ U, (6)

where f remains differentiable with regards to all of the variables X. More 
importantly, the gradient norms with regards to the non (plausible) causal variables 
XS∗c should vanish, that is, ∥ ∇S∗c f ∥= 0. Motivated by the extension, we first 
assume f∗ to be differentiable in Definition 1, then we have the claim:

Claim 1. Following the specification of U, X = (X1, X2, …, Xn) and Y in Definition 
1, if XŜ = (XŜ1 , …, XŜj ) with indices Ŝ ⊆ {1, …, n} are the identifiable causal 
variables, then there exists a differentiable function f(X) : Rn

�→ R satisfying 
equations (1) and (2) such that f has the maximum amount |Ŝc| of variables  
with ∥ ∇Ŝc f ∥= 0.

From this perspective, we can reduce the ICPs to learning an invariant 
differentiable function f, where f has the (maximum amount of) vanishing gradient 
norms on the non-causal variables. Such reduction enables us to smoothly 
integrate the ICP into the modern differentiable learning framework.

Algorithm design. To impose the vanishing gradient norms, we seek for the 
mask vector in equation (5) as the solution. Initially, we assign mask = 1 for all the 
variables. Assume we mask a causal variable Xi by flipping maski = 0, then it should 
greatly disturb the learning errors across multiple environments. If this is the case, 
we restore maski = 1 and take Xi as the causal variable. Otherwise we reject the 
variable Xi and maski remains as 0, which imposes the zero gradient with respect 
to Xi. To quantify the disturbance when variables of interest are missing, existing 
ICPs use several statistical tests52–54. These tests suffer from capturing the nuance of 
distributions related to higher-dimensional clinical data. Motivated by the recent 
success in complex vision data55, we utilize the FID44, which is derived from the 
Wasserstein distance 56. More specifically, the square root of FID between Gaussian 
distributions is exactly W2 Wasserstein distance56, that is, satisfying three axioms 
(identity, symmetry and triangular inequality), whereas the statistical tests used in 
refs. 23–25 are generally not mathematical metrics. As a result, the maximum FID 
(mFID) of U is proposed to measure the distribution difference,

mFID = max
u∈U

FID (μu, μuc ), (7)

where μu, μuc are the distributions with regards to the data sampled from the 
environment(s) {u} and {u}c. Supplementary Table 6 presents side by side 
comparisons between mFID, F-test + t-test23,25 and Levene-test + Wilcoxon-test24, 
all of which are applied for training the same type-safe function 
COMP(NN, CAT(FILTER(PRED))) under the proposed causal differentiable 
learning scheme. As displayed in Supplementary Table 6, we conclude that the 
proposed mFID outperforms the compared statistical tests with a clear margin. For 
the pseudo code of proposed algorithm please check the top plot of Fig. 1 (in the 
‘causal differential learning’ box).

Proof of concept. For the sake of concept validation, we first conduct experiments 
on toy datasets. We compare the proposed AutoCI to the SOTA methods ICP, 
NICP and AICP. Specifically, we follow the two experimental protocols presented 
in AICP25: finite sample setting and ABCD setting57. The former presents the 
ideal scenario where the same amount of data (1,000) are sampled from both 
observational and experimental (interventional) environments, whereas the latter 
simulates a more realistic case where limited experimental data (10) are collected 
in conjunction with a large amount of observational data (1,000). The data of 
both settings are generated from randomly chosen linear structural causal models. 
In our experiments, 400 structural causal models are tested to guarantee the 
reliability of our results. For the compared ICP methods, we applied the optimal 
strategies discussed in the paper and parameters are fine-tuned to the experiments. 
Specifically, careful parallelization and code optimization is also performed for 
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ICP methods. We use 16 cores of CPU Intel(R) Core(TM) i7-7820X CPU @ 
3.60 GHz to train the ICP methods in parallel and the GPU NVIDIA TITAN 
V (12 GB) to train the AutoCI. For the proposed AutoCI, we use the standard 
Adam optimization58 at a learning rate of 0.02 throughout the experiments. For 
the warm-up stage (steps 1 and 2 of Fig. 1) of causal differentiable learning we 
adopt eight epochs. The batch size is set to be 64 for all the experiments. We 
calibrate the λ = 5, 1 for toy and PORTEC on a small subset of unused data. For 
the toy experiment, we apply the MSE loss to supervise the learning process and 
report the result obtained by training the AutoCI one time, where the non-causal 
variable is determined to be the one with 0 causal probability (equation (5)). For 
the PORTEC experiment, we utilize the partial likelihood to learn the hazard 
coefficient59. To fully utilize the PORTEC patient data and incorporate into the 
differentiable cox model59, the molecular subtype variables POLEmut, MMRd and 
p53abn are assigned with 1 if present else (including NSMP) 0. To guarantee the 
representativeness of the PORTEC results, we independently train the AutoCI 64 
times and average the causal probability for each variable. Complementary to JS 
score, we also report FWER = P(SPRED ⊈ Sprox) (type-I error).

As shown in Table 3, our AutoCI achieved competitive JS and FWER scores 
compared to the ICP methods. Clearly, the proposed method is more resistant to the 
influence of hidden confounders and all the results reach >90% JS accuracy. This 
is achieved by the optimal type-safe function COMP(NN, CAT(FILTER(PRED))) 
(Fig. 2, left and middle; Supplementary Tables 7 and 8). Such advantages also 
confirm the effectiveness of the proposed causal learning scheme with the 
utilization of mFID metric. Similar to the PORTEC experiments, due to the 
exhaustive subset research required in equation (3), the time complexity of ICP and 
NICP raises dramatically from ABCD to finite sample settings (Fig. 2, right).

Ethics statement. The PORTEC study protocols were approved by the Dutch 
Cancer Society and by the medical ethics committees at participating centers. 
Both studies were conducted in accordance with the principles of the Declaration 
of Helsinki. All patients provided informed consent for study participation. The 
PORTEC 1 trial was registered at the Daniel Den Hoed Cancer Center (DDHCC) 
Trial Office. The PORTEC 2 trial was registered at ClinicalTrials.gov under the 
identifier NCT00376844.

Reporting summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The PORTEC dataset analysed in this study is not publicly available due to 
restrictions by privacy laws. The dataset and tumour material are currently 
available to the members of the international TransPORTEC consortium, which is 
open to requests for sharing of the data and materials after receipt and evaluation of 
a scientific proposal. Requests should be addressed to the corresponding authors. 
Please contact N.H. at n.horeweg@lumc.nl for more details. Depending on the 
specific research proposal, the TransPORTEC consortium will determine when, for 
how long, for which specific purposes, and under which conditions the requested 
data can be made available, subject to ethical consent.

Code availability
The code used to generate the data of the toy experiments is available at https://
github.com/juangamella/aicp. Our code is implemented with PyTorch and  
publicly accessible at https://github.com/CTPLab/AutoCI, which is released  
under the MIT licence.
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Extended Data Fig. 1 | The consort diagram presenting the process of patient selection. Abbreviations: QC - quality control, IHC - 
immunohistochemistry, EEC- endometrioid endometrial carcinoma, NEEC- non-endometrioid endometrial carcinoma.
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