160 research outputs found

    Metallothioneins Are Required for Formation of Cross-Adaptation Response to Neurobehavioral Toxicity from Lead and Mercury Exposure in Nematodes

    Get PDF
    Metallothioneins (MTs) are small, cysteine-rich polypeptides, but the role of MTs in inducing the formation of adaptive response is still largely unknown. We investigated the roles of metallothionein genes (mtl-1 and mtl-2) in the formation of cross-adaptation response to neurobehavioral toxicity from metal exposure in Caenorhabditis elegans. Pre-treatment with mild heat-shock at L2-larva stage effectively prevented the formation of the neurobehavioral defects and the activation of severe stress response in metal exposed nematodes at concentrations of 50 and 100 Β΅M, but pre-treatment with mild heat-shock did not prevent the formation of neurobehavioral defects in 200 Β΅M of metal exposed nematodes. During the formation of cross-adaptation response, the induction of mtl-1 and mtl-2 promoter activity and subsequent GFP gene expression were sharply increased in 50 Β΅M or 100 Β΅M of metal exposed Pmtl-1::GFP and Pmtl-2::GFP transgenic adult animals after mild heat-shock treatment compared with those treated with mild heat-shock or metal exposure alone. Moreover, after pre-treatment with mild heat-shock, no noticeable increase of locomotion behaviors could be observed in metal exposed mtl-1 or mtl-2 mutant nematodes compared to those without mild heat-shock pre-treatment. The defects of adaptive response to neurobehavioral toxicity induced by metal exposure formed in mtl-1 and mtl-2 mutants could be completely rescued by the expression of mtl-1 and mtl-2 with the aid of their native promoters. Furthermore, over-expression of MTL-1 and MTL-2 at the L2-larval stage significantly suppressed the toxicity on locomotion behaviors from metal exposure at all examined concentrations. Therefore, the normal formation of cross-adaptation response to neurobehavioral toxicity induced by metal exposure may need the enough accumulation of MTs protein in animal tissues

    Modulation of Gut Microbiota in Pathological States

    Get PDF
    The human microbiota is an aggregate of microorganisms residing in the human body, mostly in the gastrointestinal tract (GIT). Our gut microbiota evolves with us and plays a pivotal role in human health and disease. In recent years, the microbiota has gained increasing attention due to its impact on host metabolism, physiology, and immune system development, but also because the perturbation of the microbiota may result in a number of diseases. The gut microbiota may be linked to malignancies such as gastric cancer and colorectal cancer. It may also be linked to disorders such as nonalcoholic fatty liver disease (NAFLD); obesity and diabetes, which are characterized as β€œlifestyle diseases” of the industrialized world; coronary heart disease; and neurological disorders. Although the revolution in molecular technologies has provided us with the necessary tools to study the gut microbiota more accurately, we need to elucidate the relationships between the gut microbiota and several human pathologies more precisely, as understanding the impact that the microbiota plays in various diseases is fundamental for the development of novel therapeutic strategies. Therefore, the aim of this review is to provide the reader with an updated overview of the importance of the gut microbiota for human health and the potential to manipulate gut microbial composition for purposes such as the treatment of antibiotic-resistant Clostridium difficile (C. difficile) infections. The concept of altering the gut community by microbial intervention in an effort to improve health is currently in its infancy. However, the therapeutic implications appear to be very great. Thus, the removal of harmful organisms and the enrichment of beneficial microbes may protect our health, and such efforts will pave the way for the development of more rational treatment options in the future

    Simulated Annealing Algorithm Combined with Chaos for Task Allocation in Real-Time Distributed Systems

    Get PDF
    This paper addresses the problem of task allocation in real-time distributed systems with the goal of maximizing the system reliability, which has been shown to be NP-hard. We take account of the deadline constraint to formulate this problem and then propose an algorithm called chaotic adaptive simulated annealing (XASA) to solve the problem. Firstly, XASA begins with chaotic optimization which takes a chaotic walk in the solution space and generates several local minima; secondly XASA improves SA algorithm via several adaptive schemes and continues to search the optimal based on the results of chaotic optimization. The effectiveness of XASA is evaluated by comparing with traditional SA algorithm and improved SA algorithm. The results show that XASA can achieve a satisfactory performance of speedup without loss of solution quality

    Antibody-based cancer immunotherapy by targeting regulatory T cells

    Get PDF
    Regulatory T cells (Tregs) are among the most abundant suppressive cells, which infiltrate and accumulate in the tumor microenvironment, leading to tumor escape by inducing anergy and immunosuppression. Their presence has been correlated with tumor progression, invasiveness and metastasis. Targeting tumor-associated Tregs is an effective addition to current immunotherapy approaches, but it may also trigger autoimmune diseases. The major limitation of current therapies targeting Tregs in the tumor microenvironment is the lack of selective targets. Tumor-infiltrating Tregs express high levels of cell surface molecules associated with T-cell activation, such as CTLA4, PD-1, LAG3, TIGIT, ICOS, and TNF receptor superfamily members including 4-1BB, OX40, and GITR. Targeting these molecules often attribute to concurrent depletion of antitumor effector T-cell populations. Therefore, novel approaches need to improve the specificity of targeting Tregs in the tumor microenvironment without affecting peripheral Tregs and effector T cells. In this review, we discuss the immunosuppressive mechanisms of tumor-infiltrating Tregs and the status of antibody-based immunotherapies targeting Tregs

    Effects of Aluminum Oxide Nanoparticles on the Growth, Development, and microRNA Expression of Tobacco (Nicotiana tabacum)

    Get PDF
    Nanoparticles are a class of newly emerging environmental pollutions. To date, few experiments have been conducted to investigate the effect nanoparticles may have on plant growth and development. It is important to study the effects nanoparticles have on plants because they are stationary organisms that cannot move away from environmental stresses like animals can, therefore they must overcome these stresses by molecular routes such as altering gene expression. microRNAs (miRNA) are a newly discovered, endogenous class of post-transcriptional gene regulators that function to alter gene expression by either targeting mRNAs for degradation or inhibiting mRNAs translating into proteins. miRNAs have been shown to mediate abiotic stress responses such as drought and salinity in plants by altering gene expression, however no study has been performed on the effect of nanoparticles on the miRNA expression profile; therefore our aim in this study was to classify if certain miRNAs play a role in plant response to Al2O3 nanoparticle stress. In this study, we exposed tobacco (Nicotiana tabacum) plants (an important cash crop as well as a model organism) to 0%, 0.1%, 0.5%, and 1% Al2O3 nanoparticles and found that as exposure to the nanoparticles increased, the average root length, the average biomass, and the leaf count of the seedlings significantly decreased. We also found that miR395, miR397, miR398, and miR399 showed an extreme increase in expression during exposure to 1% Al2O3 nanoparticles as compared to the other treatments and the control, therefore these miRNAs may play a key role in mediating plant stress responses to nanoparticle stress in the environment. The results of this study show that Al2O3 nanoparticles have a negative effect on the growth and development of tobacco seedlings and that miRNAs may play a role in the ability of plants to withstand stress to Al2O3 nanoparticles in the environment

    MicroRNA Expression Analysis in the Cellulosic Biofuel Crop Switchgrass (Panicum virgatum) under Abiotic Stress

    Get PDF
    Switchgrass has increasingly been recognized as a dedicated biofuel crop for its broad adaptation to marginal lands and high biomass. However, little is known about the basic biology and the regulatory mechanisms of gene expression in switchgrass, particularly under stress conditions. In this study, we investigated the effect of salt and drought stress on switchgrass germination, growth and the expression of small regulatory RNAs. The results indicate that salt stress had a gradual but significant negative effect on switchgrass growth and development. The germination rate was significantly decreased from 82% for control to 36% under 1% NaCl treatment. However, drought stress had little effect on the germination rate but had a significant effect on the growth of switchgrass under the severest salinity stress. Both salt and drought stresses altered the expression pattern of miRNAs in a dose-dependent manner. However, each miRNA responded to drought stress in a different pattern. Salt and drought stress changed the expression level of miRNAs mainly from 0.9-fold up-regulation to 0.7-fold down-regulation. miRNAs were less sensitive to drought treatment than salinity treatment, as evidenced by the narrow fold change in expression levels. Although the range of change in expression level of miRNAs was similar under salt and drought stress, no miRNAs displayed significant change in expression level under all tested salt conditions. Two miRNAs, miR156 and miR162, showed significantly change in expression level under high drought stress. This suggests that miR156 and miR162 may attribute to the adaption of switchgrass to drought stress and are good candidates for improving switchgrass as a biofuel crop by transgenic technology

    Cardio-Protection of Salvianolic Acid B through Inhibition of Apoptosis Network

    Get PDF
    Targeting cellular function as a system rather than on the level of the single target significantly increases therapeutic potency. In the present study, we detect the target pathway of salvianolic acid B (SalB) in vivo. Acute myocardial infarction (AMI) was induced in rats followed by the treatment with 10 mg/kg SalB. Hemodynamic detection and pathological stain, 2-dimensional electrophoresis, MALDI-TOF MS/MS, Western blot, pathway identification, apoptosis assay and transmission electron microscope were used to elucidate the effects and mechanism of SalB on cardioprotection. Higher SalB concentration was found in ischemic area compared to no-ischemic area of heart, correlating with improved heart function and histological structure. Thirty-three proteins regulated by SalB in AMI rats were identified by biochemical analysis and were classified as the components of metabolism and apoptosis networks. SalB protected cardiomyocytes from apoptosis, inhibited poly (ADP-ribose) polymerase-1 pathway, and improved the integrity of mitochondrial and nucleus of heart tissue during AMI. Furthermore, the protective effects of SalB against apoptosis were verified in H9c2 cells. Our results provide evidence that SalB regulates multi-targets involved in the apoptosis pathway during AMI and therefore may be a candidate for novel therapeutics of heart diseases

    The Genomic Analysis of Erythrocyte microRNA Expression in Sickle Cell Diseases

    Get PDF
    BACKGROUND: Since mature erythrocytes are terminally differentiated cells without nuclei and organelles, it is commonly thought that they do not contain nucleic acids. In this study, we have re-examined this issue by analyzing the transcriptome of a purified population of human mature erythrocytes from individuals with normal hemoglobin (HbAA) and homozygous sickle cell disease (HbSS). METHODS AND FINDINGS: Using a combination of microarray analysis, real-time RT-PCR and Northern blots, we found that mature erythrocytes, while lacking ribosomal and large-sized RNAs, contain abundant and diverse microRNAs. MicroRNA expression of erythrocytes was different from that of reticulocytes and leukocytes, and contributed the majority of the microRNA expression in whole blood. When we used microRNA microarrays to analyze erythrocytes from HbAA and HbSS individuals, we noted a dramatic difference in their microRNA expression pattern. We found that miR-320 played an important role for the down-regulation of its target gene, CD71 during reticulocyte terminal differentiation. Further investigation revealed that poor expression of miR-320 in HbSS cells was associated with their defective downregulation CD71 during terminal differentiation. CONCLUSIONS: In summary, we have discovered significant microRNA expression in human mature erythrocytes, which is dramatically altered in HbSS erythrocytes and their defect in terminal differentiation. Thus, the global analysis of microRNA expression in circulating erythrocytes can provide mechanistic insights into the disease phenotypes of erythrocyte diseases

    Identification of BC005512 as a DNA Damage Responsive Murine Endogenous Retrovirus of GLN Family Involved in Cell Growth Regulation

    Get PDF
    Genotoxicity assessment is of great significance in drug safety evaluation, and microarray is a useful tool widely used to identify genotoxic stress responsive genes. In the present work, by using oligonucleotide microarray in an in vivo model, we identified an unknown gene BC005512 (abbreviated as BC, official full name: cDNA sequence BC005512), whose expression in mouse liver was specifically induced by seven well-known genotoxins (GTXs), but not by non-genotoxins (NGTXs). Bioinformatics revealed that BC was a member of the GLN family of murine endogenous retrovirus (ERV). However, the relationship to genotoxicity and the cellular function of GLN are largely unknown. Using NIH/3T3 cells as an in vitro model system and quantitative real-time PCR, BC expression was specifically induced by another seven GTXs, covering diverse genotoxicity mechanisms. Additionally, dose-response and linear regression analysis showed that expression level of BC in NIH/3T3 cells strongly correlated with DNA damage, measured using the alkaline comet assay,. While in p53 deficient L5178Y cells, GTXs could not induce BC expression. Further functional studies using RNA interference revealed that down-regulation of BC expression induced G1/S phase arrest, inhibited cell proliferation and thus suppressed cell growth in NIH/3T3 cells. Together, our results provide the first evidence that BC005512, a member from GLN family of murine ERV, was responsive to DNA damage and involved in cell growth regulation. These findings could be of great value in genotoxicity predictions and contribute to a deeper understanding of GLN biological functions
    • …
    corecore