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Abstract

Background: RNA-Seq has become increasingly popular in transcriptome profiling. One aspect of transcriptome
research is to quantify the expression levels of genomic elements, such as genes, their transcripts and exons.
Acquiring a transcriptome expression profile requires genomic elements to be defined in the context of the
genome. Multiple human genome annotation databases exist, including RefGene (RefSeq Gene), Ensembl, and the
UCSC annotation database. The impact of the choice of an annotation on estimating gene expression remains
insufficiently investigated.

Results: In this paper, we systematically characterized the impact of genome annotation choice on read mapping
and transcriptome quantification by analyzing a RNA-Seq dataset generated by the Human Body Map 2.0 Project.
The impact of a gene model on mapping of non-junction reads is different from junction reads. For the RNA-Seq
dataset with a read length of 75 bp, on average, 95% of non-junction reads were mapped to exactly the same
genomic location regardless of which gene models was used. By contrast, this percentage dropped to 53% for
junction reads. In addition, about 30% of junction reads failed to align without the assistance of a gene model,
while 10–15% mapped alternatively. There are 21,958 common genes among RefGene, Ensembl, and UCSC
annotations. When we compared the gene quantification results in RefGene and Ensembl annotations, 20% of
genes are not expressed, and thus have a zero count in both annotations. Surprisingly, identical gene quantification
results were obtained for only 16.3% (about one sixth) of genes. Approximately 28.1% of genes’ expression levels
differed by 5% or higher, and of those, the relative expression levels for 9.3% of genes (equivalent to 2038) differed
by 50% or greater. The case studies revealed that the gene definition differences in gene models frequently result
in inconsistency in gene quantification.

Conclusions: We demonstrated that the choice of a gene model has a dramatic effect on both gene quantification
and differential analysis. Our research will help RNA-Seq data analysts to make an informed choice of gene model
in practical RNA-Seq data analysis.
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Background
RNA-Seq, the sequencing of a population of RNA tran-
scripts using high-throughput sequencing technologies,
profiles an entire transcriptome at single-base resolution
whilst concurrently quantifying gene expression levels
[1-5]. RNA-Seq can analyze subtle features of the
transcriptome, such as novel transcript variants, allele-
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specific expression, and splice junctions [4,5]. Previously,
we performed a side-by-side comparison of RNA-Seq
and microarray to investigate T-cell activation, and dem-
onstrated that RNA-Seq is superior in detecting low
abundance transcripts, and for differentiating biologic-
ally critical isoforms [6]. RNA-Seq also avoids technical
limitations inherent to the microarray platform related
to probe performance, such as cross-hybridization, lim-
ited detection range of individual probes, as well as non-
specific hybridization [6-8]. With decreasing sequencing
cost, RNA-Seq is becoming an attractive approach to
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profile gene expression or transcript abundance, and
to evaluate differential expression among biological
conditions.
Current RNA-Seq approaches use shotgun sequencing

technologies such as Illumina, in which millions or even
billions of short reads are generated from a randomly
fragmented cDNA library. After sequencing, the first
step involves mapping those short reads to a genome or
transcriptome. In recent years, a large number of map-
ping algorithms have been developed for read mapping
and RNA-Seq differential analysis [9-14]. However, ac-
curate alignment of high-throughput short RNA-Seq
reads remains challenging, mainly because of junction
(i.e., exon-exon spanning) reads and the ambiguity of
multiple-mapping reads. Currently, many RNA-Seq
alignment tools, including GSNAP [15], OSA [16], STAR
[17], MapSplice[18], and TopHat [19], use reference
transcriptomes to inform the alignments of junction
reads. In our previous study [20], we had assessed the
impact of using RefGene (RefSeq Gene) [21] on mapping
short RNA-Seq reads, and demonstrated that without
the assistance of RefGene, more than one third of junc-
tion reads failed to map to the reference genome in the
alignment process.
One aspect of transcriptome research is to quantify

expression levels of genes, transcripts, and exons. Ac-
quiring the transcriptome expression profile requires
genomic elements to be defined in the context of the
genome. In addition to RefGene, there are several other
public human genome annotations, including UCSC
Known Genes [22], Ensembl [23], AceView [24], Vega
[25], and GENCODE[26]. Characteristics of these anno-
tations differ because of variations in annotation strat-
egies and information sources. RefSeq human gene
models are well supported and broadly used in various
studies. The UCSC Known Genes dataset is based on
protein data from Swiss-Prot/TrEMBL (UniProt) and
the associated mRNA data from GenBank, and serves as
a foundation for the UCSC Genome Browser. Vega
genes are manually curated transcripts produced by the
HAVANA group at the Welcome Trust Sanger Institute,
and are merged into Ensembl. Ensembl genes contain
both automated genome annotation and manual curation,
while the gene set of GENCODE corresponds to Ensembl
annotation since GENCODE version 3c (equivalent to
Ensembl 56). AceView provides a comprehensive non-
redundant curated representation of all available human
cDNA sequences.
Although there are multiple genome annotations avail-

able, researchers need to choose a genome annotation
(or gene model) while performing RNA-Seq data ana-
lysis. However, the effect of genome annotation choice
on downstream RNA-Seq expression estimates is under-
appreciated. Wu et al. [27] defined the complexity of
human genome annotations in terms of the number of
genes, isoforms, and exons, and demonstrated that the
selection of human genome annotation results in differ-
ent gene expression estimates. Chen et al. [28] systemat-
ically compared the human annotations present in
RefSeq, Ensembl, and AceView on diverse transcriptomic
and genetic analyses. They found that the human gene
annotations in the three databases are far from complete,
although Ensembl and AceView annotate many more
genes than RefSeq. In this paper, we performed a compre-
hensive evaluation of different annotations on RNA-Seq
data analysis, including RefGene, UCSC, and Ensembl.
We chose these three gene models because we use them
regularly for in-house RNA-Seq data analysis. Our re-
search focused on: (1) comparing the coverage and incom-
pleteness of different gene models; (2) quantifying the
impact of gene models on the mapping of both junction
and non-junction reads; and (3) evaluating the effect of
genome annotation choice on gene quantification and dif-
ferential analysis. To a broader extent, one of the most
practical questions researchers want to know in advance
is: if different gene models are chosen for RNA-Seq data
analysis, what is the chance of obtaining the same quanti-
fication result for a given gene?

Results and discussion
The Human Body Map 2.0 Project generated RNA-Seq
data for 16 different human tissues (adipose, adrenal,
brain, breast, colon, heart, kidney, leukocyte, liver, lung,
lymph node, ovary, prostate, skeletal muscle, testis, and
thyroid). We chose to analyze this public dataset because
gene expression is tissue specific and analyzing those 16
high-quality RNA-Seq samples as a whole could result in
less biased conclusions. Note that none of the gene an-
notation is 100% complete. As a result, for those RNA-
Seq reads not covered by a gene annotation, whether to
use the gene model in the mapping step has no impact
on their mappings. Therefore, to fairly assess the impact
of a gene model on RNA-Seq read mapping, only those
reads covered by a gene model were used. In this study,
we devised a two-stage mapping protocol. In Stage #1,
all reads that are not covered by a gene model were fil-
tered out. In Stage #2, all remaining reads were mapped
to the reference genome with and without the use of a
gene model. The role of a gene model in the mapping
step was then quantified and characterized by comparing
the mapping results in Stage #2.

The coverage of different gene annotations
The RNA-Seq read mapping summaries for all 16 sam-
ples were shown in Additional file 1: Table S1 (read
length = 75 bp) and Additional file 1: Table S2 (read
length = 50 bp), respectively. There are two different
mapping modes in Additional file 1: Tables S1 and S2.
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In the “transcriptome only” mapping mode, all RNA-Seq
reads were mapped to a reference transcriptome only. If
a read could not be mapped to a known gene region, it
becomes unmapped, even though it could potentially be
aligned to a genomic region without annotations. While
in the “transcriptome + genome” mapping mode, reads
were first mapped to a reference transcriptome, and then
the unmapped ones were mapped to the reference
genome. The impact of a reference transcriptome on the
mapping of RNA-Seq reads is attenuated in the “tran-
scriptome + genome” mapping mode because every un-
mapped read has a second chance to be mapped to
a genome. The mapping summaries for the data in
Additional file 1: Tables S1 and S2 were shown in
Figure 1 and Additional file 1: Figure S1, respectively. In
the “transcriptome only” mapping mode, more reads
were mapped in Ensembl than in RefGene and/or UCSC.
For each tissue type, the mapping rate was similar be-
tween RefGene and UCSC. The average read mapping
rates were 86%, 69%, and 70% for Ensembl, RefGene,
and UCSC annotations, respectively. Short-read mapping
is a basic step in RNA-Seq data analyses, and to a certain
extent, the percent of reads mapped to a given transcrip-
tome can roughly reflect the completeness of its annotated
genes and transcripts. Thus, Ensembl annotation has
much broader gene coverage than RefGene and UCSC.
Figure 1 The read mapping summary for 16 tissue samples in the “tr
modes (note: read length = 75 bp). In the “transcriptome only” mode, m
panel), and more reads become multiple-mapped in Ensembl than in RefG
RNA-Seq reads are mapped to the reference genome directly without the
In contrast, Figure 1 shows that the read mapping per-
centage is also sample dependent, and this holds true for
every gene model. For instance, only 52.5% of sequence
reads in the heart were mapped to the RefGene model;
while in leukocytes, 84.2% of reads could be mapped to
RefGene. This mapping difference between heart and
leukocyte results from, at least in part, the incompleteness
of the RefGene annotation. As more genes are annotated
in a gene model, a higher percentage of reads will be
mapped in the “Transcriptome only” mapping mode.
The data patterns in “transcriptome + genome” map-

ping mode were different from those determined by the
“transcriptome only” mode (left panel on Figure 1). In
the “transcriptome + genome” mapping mode, the aver-
age mapping rates for Ensembl, RefGene, and UCSC in-
creased to 96.7%, 94.5%, and 94.6%, respectively, and the
mapping rate difference among different gene models
decreased. This large difference in the mapping rates
between the two modes suggests the incompleteness of
gene models: there are many reads that were mapped to
the genomic regions without annotations.
In the “transcriptome only” mapping mode, an average

of 6.9%, 1.4%, and 1.8% of reads were multiple-mapped
reads in Ensembl, RefGene, and UCSC gene models,
respectively (the right panel in Figure 1). The percentage
of multiple-mapped reads in Ensembl is higher than in
anscriptome only” and “transcriptome + genome” mapping
ore reads are mapped in Ensembl than in RefGene and UCSC (left
ene and UCSC (right panel). Note: the gene model “none” means the
use of a gene model.
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RefGene or UCSC. Usually, a more comprehensive
annotation generally annotates more genes and isoforms,
and thus, increases the possibility of ambiguous map-
pings. These ambiguous mappings directly translate to
an increase in the percentage of non-uniquely mapped
reads.

The impact of a gene model on RNA-seq read mapping
In Stage #1, the unmapped reads from the “transcrip-
tome only” mapping mode were filtered out. In Stage #2,
we remapped the remaining reads with and without the
use of gene models. When gene models were used in
Stage #2, all reads could be mapped, either uniquely or
to multiple locations, and there were no unmapped
reads. When those reads were remapped to genome
without the use of gene models, some became un-
mapped. According to the number of mapped locations
(#ML), all sequence reads were classified into three cat-
egories, unique (i.e., #ML = 1), multiple (i.e., #ML > =2),
and unmapped (i.e., #ML = 0). The RNA-Seq reads re-
mapping summaries in Stage #2 for all 16 samples were
shown in Figure 2 (read length = 75 bp) and Additional
file 1: Figure S2 (read length = 50 bp), respectively. The
numeric data corresponding to Figure 2 and Additional
file 1: Figure S2 were tabulated in Additional file 1:
Tables S3 and S4, respectively. The RefGene and UCSC
consistently had the highest percentage of uniquely
mapped reads; while the percentage of non-uniquely
mapped reads was much higher in Ensembl (samples
colored in blue in Figure 2). Without a gene model, the
percentage of unmapped reads was nearly constant at 6%
(samples colored in pink in Figure 2). As we demonstrated
as follows, a gene model mainly affects the alignment of
junction reads, but has little impact on non-junction
Figure 2 The effect of a gene model on the mapping summaries for 1
consistently have the highest percentage of uniquely mapped reads; while
Ensembl. Without a gene model (indicated in pink) in the mapping step, a
reads. On average, 23% of reads in our samples were junc-
tion reads, and usually about one third of them failed to
be mapped without the use of a gene model. Therefore, it
is expected that ~6% (23% * 0.33) of the mapped reads
become unmapped without the use of a gene model.
To evaluate the impact of a gene model on read map-

ping, the mapping summaries in Figure 2 and Additional
file 1: Figure S2 were not sufficient. For instance, a read
could be aligned differently with and without the assist-
ance of a gene model in mapping, and in this scenario,
the mapping summary could not identify such a differ-
ence. Thus, we compared the mapping details for every
read, including start and end positions, and splicing
sites. For simplicity, in Stage #2, we focused on uniquely
mapped reads in the “transcriptome only” mapping
mode. A uniquely mapped read could be classified into
four categories according to its corresponding mapping
information without a gene model: (1) “Identical”—
remaining mapped to the same genomic region; (2)
“Alternative”—still uniquely mapped but differently; (3)
“Multiple”—mapped to more locations; and (4) “Un-
mapped”. The detailed evaluation results are summa-
rized in Figure 3 (read length = 75 bp) and Additional
file 1: Figure S3 (read length = 50 bp), and reported in
Additional file 1: Tables S5 and S6.
In Figure 3A, we divided uniquely mapped reads into

two classes, i.e., non-junction reads and junction reads,
and investigated the impact of a gene model on their
mapping. Accordingly to Figure 3A, roughly 23% of
mapped reads were junction reads, and the remaining
77% were non-junction reads. For non-junction reads
(see Figure 3B), 95% remained mapped to exactly the
same genomic location regardless of the use of a gene
model. Without a gene model, 3% to 9% of non-
6 tissue samples (read length = 75 bp). The RefGene and UCSC
the percentage of non-uniquely mapped reads is much higher in
constant 6% of reads become unmapped.



Figure 3 The impact of a gene model on RNA-Seq read mapping (read length = 75 bp). (A) composition of mapped reads: roughly 23%
are junction reads, and the rest 77% are non-junction reads; (B) effect on mapping of non-junctions reads: on average, 95% remain mapped to
exactly the same genomic location, whilst 3–9% of reads become multiple-mapped reads; (C) effect on mapping of junctions reads: an average
of 53% of reads remain mapped to the same genomic regions without the assistance of a gene model. About 30% of junction reads fail to be
mapped, while 10–15% map alternatively. (Note: the 16 tissue sample names are denoted as follows: a: adipose; b: adrenal, c: brain; d: breast;
e: colon; f: heart; g: kidney; h: leukocyte; i: liver; j: lung; k: lymph node; l: ovary; m: prostate; n: skeletal muscle; o: testis; and p: thyroid).
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junctions reads became multiple mapped reads. Thus, it
is rare for a non-junction read to become unmapped or
mapped alternatively. However, the mapping of junction
reads was strongly impacted by the gene models (see
Figure 3C). Without using a gene model, an average of
53% of junction reads remained mapped to the same
genomic regions, 30% of failed to map to any genomic
region, and 10–15% of them mapped alternatively. Such
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alternative mappings are generally inferior compared to
their corresponding mapping results using a gene model
[20]. Similar to non-junction reads, an average of 5% of
junction reads were mapped to more than one location
without using a gene model. As shown in Figure 3C,
more uniquely-mapped junction reads became multiple
mapped reads in RefGene and/or UCSC than in Ensembl
when the sequence reads were aligned to the reference
genome without the use of gene models.

The impact of gene model choice on gene quantification
Different gene identifiers are used in different annotation
databases; therefore, we mapped those database-specific
identifiers into the unique HGNC gene symbols from
the HUGO Gene Nomenclature Committee when com-
paring their gene quantification results across the differ-
ent gene models originating from these databases.
Considering that annotations are more or less incom-
plete in these databases, we only focused on common
genes. The Venn diagram in Figure 4 showed the overlap
and intersection of RefGene, UCSC, and Ensembl anno-
tations. Clearly RefGene has fewest unique genes, while
more that 50% of genes in Ensembl are unique. In gen-
eral, the different annotations have very high overlaps:
21,598 common genes are shared by all three gene
annotations.
To investigate the impact of different gene models on

gene quantification results, we focused on this set of
21,598 common genes. The overall correlation between
RefGene and Ensembl was shown in Figure 5. Both x
and y-axes represented log2(count + 1). For all genes, 1
was added to the counts to avoid a logarithmic error for
those genes with zero counts. Ideally, we should get
identical numbers of mapped reads for all common genes,
regardless of the choice of a gene model; however, this
was clearly not the case. Although the majority of genes
had highly consistent or nearly identical expression levels,
Figure 4 The overlap and intersection among RefGene, UCSC,
and Ensembl annotations. In general, different annotations have
very high overlaps: there are 21,598 common genes shared by all
three gene models. RefGene has the fewest unique genes, while
more than 50% of genes in Ensembl are unique.
there were a significant number of genes whose quantifi-
cation results were dramatically affected by the choice of a
gene model. As shown in Figure 5, there were many genes
for which the number of reads mapped to them was 0 in
one gene model, but many in others.
To quantify the concordance between RefGene and

Ensembl annotations, we first calculated the ratio of
mapped read for each gene. For a given gene, we defined
the raw read counts in RefGene and Ensembl annota-
tions as #C1 and #C2, respectively. To prevent division
by 0, 1 was added to all raw read counts before the ra-
tios were calculated. The adjusted counts were denoted
as #C1’ (=#C1 + 1) and #C2’ (=#C2 + 1), respectively.
The ratio was calculated as Max(#C1’,#C2’)/Min(#C1’,
#C2’). Therefore the calculated ratio was always equal or
greater than 1. The distribution of ratios was summa-
rized in Table 1 (read length = 75 bp). Among the 21,958
common genes, about 20% of genes had no expression
at all in both annotations. Identical counts were ob-
tained for only 16.3% of genes. Approximately 28.1% of
genes’ expression levels differed by 5% or higher, and
among them, 9.3% of genes (equivalent to 2038) differed
by 50% or greater. As shown in Table 1 and Figure 5,
the choice of a gene model had a large impact on gene
quantification. The concordance between UCSC and
RefGene annotation was reported in Additional file 1:
Table S7 (read length = 75 bp). Compared with Ensembl,
UCSC had a much better concordance with RefGene, in
terms of the gene quantification results. 38.3% of genes
had identical read counts, much higher than the 16.3%
between Ensembl and RefGene. The percentage of genes
with expression levels differing by 5% or more was only
11.3%, which was much less than the corresponding 28%
between Ensembl and RefGene. Furthermore, only 3.24%
of genes‘ quantification results differed by 50% or
greater, which was lower than the 9.3% between Ensembl
and RefGene.
Why does the choice of a gene model have so dra-

matic an effect on gene quantification? Below, we chose
a few extreme or representative cases to provide possible
explanations. In the liver sample, the expression levels for
these exemplary genes for both Ensembl and RefGene
were summarized in Table 2 (read length = 75 bp).
PIK3CA (phosphatidylinositol-4,5-bisphosphate 3-kinase,
catalytic subunit alpha) uses ATP to phosphorylate PtdIns,
PtdIns4P, and PtdIns(4,5)P2. In the liver sample, there
were 1094 reads mapped to PIK3CA in Ensembl annota-
tion, while only 492 reads were mapped in RefGene. The
PIK3CA gene definition in both Ensembl and RefGene,
and the mapping profile of RNA-Seq reads were shown in
Figure 6. Clearly, the difference in gene definition gives
rise to the observed discrepancy in quantification. In
Ensembl, there are three isoforms for PIK3CA, and the
longest isoform is ENST00000263967. The total length of



Figure 5 The correlation of gene quantification results between RefGene and Ensembl. Both x and y-axes represent Log2(count + 1).
Although the majority of genes have highly consistent or nearly identical expression levels, there are many genes whose quantification results
are dramatically affected by the choice of a gene model.
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this transcript is 9653 bp, comprising 21 exons, with a
very long exon #21 (6000 bp, chr3: 178,951,882-
178,957,881). In RefGene, PIK3CA has only one transcript
named NM_006218. This transcript is 3909 bp long with
a very short exon #21 (only 616 bp, located at chr
3:178,951,882-178,952,497). The definition of PIK3CA
gene in Ensembl seems more accurate than the one in
RefGene, based upon the mapping profile of the sequence
reads. Likewise, the difference in read counts for gene
EGFR and SLC30A1 in Ensembl and RefGene mainly re-
sults from the gene definition difference (Additional file 1:
Figures S4 and S5).
Figure 7 shows another example of a remarkably dif-

ferent gene model defined in Ensembl versus that in
RefGene. In RefGene, a bi-cistronic transcript encodes
the products of both the MTPN (myotrophin) and



Table 1 The distribution of the ratio of read counts between RefGene and Ensembl annotations (read length = 75 bp)

Sample No Expr Same 1.05 1.10 1.20 1.50 2 5 10 100

Adipose 19.97 16.53 26.16 19.64 14.51 8.81 5.65 1.96 0.94 0.16

Adrenal 16.92 14.04 36.18 27.09 19.07 11.28 7.14 2.45 1.24 0.24

Brain 16.79 15.22 32.94 24.91 17.95 10.78 6.73 2.29 1.08 0.20

Breast 18.04 15.22 29.63 22.21 16.06 9.80 6.52 2.38 1.19 0.20

Colon 20.50 17.41 25.85 19.43 14.30 8.95 6.10 2.30 1.17 0.19

Heart 21.23 16.43 26.39 20.10 14.39 8.88 5.47 1.73 0.82 0.19

Kidney 18.86 16.08 28.88 21.50 15.51 9.55 6.40 2.55 1.30 0.26

Leukocyte 29.53 17.37 20.03 15.29 11.62 7.58 5.37 2.47 1.33 0.26

Liver 24.60 19.16 23.20 17.43 12.84 8.24 5.42 2.00 1.02 0.15

Lung 19.65 16.46 29.22 21.35 15.07 9.09 6.15 2.61 1.43 0.24

Lymph node 20.94 16.79 31.74 24.16 17.21 10.26 6.65 2.69 1.44 0.24

Ovary 16.90 13.42 31.46 23.30 16.72 10.23 6.63 2.31 1.13 0.20

Prostate 18.21 16.29 28.33 21.14 15.17 9.43 6.51 2.49 1.27 0.23

Skeletal muscle 29.60 23.48 18.65 14.40 10.73 6.88 4.81 2.34 1.39 0.21

Testis 10.15 13.35 31.35 22.57 15.84 9.35 5.92 2.08 1.05 0.28

Thyroid 17.41 14.25 30.08 22.23 15.88 9.39 5.88 1.97 1.03 0.24

Average 19.96 16.34 28.13 21.05 15.18 9.28 6.09 2.29 1.18 0.22

Note: Column “No Expr” represents the percentage of genes that do not express at all in both annotations. Column “Same” denotes the percentage of genes
that have the same number of reads mapped to them in both gene models. The number in each cell after the column “Same” corresponds to the percentage of
genes whose ratio is equal or greater than the threshold represented by the number.
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LUZP6 (leucine zipper protein 6) genes, which are
located on chromosome 7. All mapped reads are equally
distributed to these two genes. The mature transcript is
3884 bp in RefGene. However, in Ensembl, LUZP6 is
only 177 bp long, and is completely within MTPN. As a
consequence, all reads mapped to the overlapping region
Table 2 Gene definitions and quantification results for certain
length = 75 bp)

Model Gene Counts Transcript Strand

Ensembl PIK3CA 1094 4 +

EGFR 6644 11 +

SLC30A1 9755 1 -

PIGY 0 1 -

PYURF 1799 1 -

LUZP6 0 1 -

MTPN 2618 2 -

PECAM1 0 9 -

RefGene PIK3CA 492 1 +

EGFR 2248 4 +

SLC30A1 1636 1 -

PIGY 1175 1 -

PYURF 1175 1 -

LUZP6 1908 1 -

MTPN 1908 1 -

PECAM1 1068 1 -
are assigned to MTPN only because LUZP6 does not
have any unique reads mapped to it, which explains why
the read count for LUZP6 was 0 when Ensembl annota-
tion was chosen. Likewise, the difference in gene defin-
ition (see Additional file 1: Figure S6) can explain the
quantification results for PIGY/PYURF in Table 2. The
exemplary genes in the liver tissue sample (read

Chromosome Start End Length

3 178,865,902 178,957,881 9411

7 55,086,714 55,324,313 12961

1 211,744,910 211,752,084 5474

4 89,442,724 89,442,940 217

4 89,442,136 89,444,964 1361

7 135,612,022 135,612,198 177

7 135,611,509 135,662,101 3775

HG183_PATCH 62,399,863 62,491,136 4671

3 178,866,311 178,952,497 3709

7 55,086,725 55,275,031 6571

1 211,748,381 211,752,099 2018

4 89,442,129 89,444,952 1356

4 89,442,129 89,444,952 1356

7 135,611,503 135,662,204 3884

7 135,611,503 135,662,204 3884

17 62,396,777 62,407,083 4453



Figure 6 The different gene definitions for PIK3CA give rise to differences in gene quantification. PIK3CA in the Ensembl annotation
is much longer than its definition in RefGene, explaining why there are 1094 reads mapped to PIK3CA in Ensembl, while only 492 reads are
mapped in RefGene. The PIK3CA gene definition in Ensembl seems more accurate than the one in RefGene, based upon the mapping profile
of sequence reads.
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gene PIGY in Ensembl is only 217 bp long and overlaps
completely with PYURF (PIGY Upstream Reading
Frame). Thus, all reads mapped to the region of PIGY
are assigned to gene PYURF, while no read is given to
PIGY. In RefGene, PIGY and PYURF encode exactly the
same mRNA, although the translated protein sequences
are different. Thus, all reads mapped to PIGY/PYURF
are equally distributed to these two genes. The gene
PECAM1 is another interesting example. It is located
on chromosome 17 in the RefGene model. In Ensembl,
Figure 7 The different gene definitions for LUZP6. In the Ensembl anno
gene, MTPN. As a result, all sequence reads originating from LUZP6 are ass
the same genomic region, and both encode exactly the same mRNA, thou
mapped to this region are equally distributed between these two genes.
however, this gene is located on chromosome HG183_
PATCH: 62,399,863-62,491,136. HG183_PATCH is not
included in the human genome GRCH37.3 at all,
explaining why zero reads mapped to gene PECAM1
using Ensembl annotation.

The effect of gene models on differential analysis
Generally, RNA-Seq differential analysis requires bio-
logical replicates. However, we analyzed single samples
from 16 different tissues. To demonstrate the effect of
tation, LUZP6 is only 177 bp long, and it is completely within another
igned to MTPN instead. In RefGene, LUZP6 and MTPN are derived from
gh the protein coding sequences are different. Therefore, all reads
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gene models on differential analysis, the fold changes
between heart and liver samples were calculated using
RefGene and Ensembl annotations. The correlation of
the calculated Log2Ratio (liver/heart) was depicted in
Figure 8. The graph should show a perfect diagonal line
if the choice of a gene model has no effect on differential
analysis. Although the majority of genes have highly
consistent or comparable expression changes, there are a
number of genes whose ratios are dramatically affected
by the choice of a gene model. Interestingly, some genes
have a very high fold change in one gene model, but no
change at all in another gene model. Evidently, the
choice of a gene model has an effect on the downstream
differential expression analysis, in addition to gene
quantification.

The effect of a gene model on mapping is read length
dependent
All the analysis results for the dataset with a 50-bp read
length were reported in the supplementary tables and
figures. Intuitively, the shorter a read, the more likely it
is to map to multiple locations. As a result, the percent-
age of uniquely mapped reads decreases, and the per-
centage of multiple-mapping reads increases. No matter
which gene model was used for mapping, this observa-
tion held true; for example if we compare Additional file
1: Table S1 with Additional file 1: Table S2, and/or
Additional file 1: Table S3 with Additional file 1: Table
S4. Thus, the mapping fidelity for a sequence read
increases with its length, and this is especially true for
Figure 8 The correlation of the calculated Log2Ratio (heart/
liver) between RefGene and Ensembl. The green, blue, and red
points indicate corresponding absolute difference between the two
Log2Ratios that were greater than 1, 2, or 5, respectively. Although
the majority of genes have highly consistent expression changes,
there are many genes that are remarkably affected by the choice of
different gene models.
junction reads. As demonstrated in Figure 3C and
Additional file 1: Table S5, when the read length was
75 bp, an average of 53% of junction reads remained
mapped to the same genomic regions when mapped with-
out gene annotation. However, this percentage dropped to
42% when the read length was 50 bp long (Additional file 1:
Figure S3C and Additional file 1: Table S6). Thus, the effect
of a gene model on the mapping of junction reads is
significantly influenced by read length.
In the meantime, the relative abundance of junction

reads is heavily determined by read length.
According to Figure 3A and Additional file 1: Table S5,

on average, roughly 23% of sequence reads were junction
reads when the read length was 75 bp. The percentage of
junction reads dropped to 16% when the read length was
50 bp (see Additional file 1: Figure S3A and Additional
file 1: Table S6). This is explained by the fact that the lon-
ger the read, the more likely that it spans more than one
exon. As sequencing technology evolves, the read length
will become longer and longer. Consequently, more junc-
tion reads will be generated by short-gun sequencing
technologies. Therefore, the need to incorporate genome
annotation in the read mapping process will greatly
increase.

Which genome annotation to choose for gene
quantification?
In practice, there is no simple answer to this question,
and it depends on the purpose of the analysis. In this
paper, we demonstrated that the choice of a gene model
has an effect on the quantification results. Previously, we
compared the gene quantification results when RefGene
and Ensembl annotations were used. Among 25,958
common genes, the expressions of 2038 genes (i.e., 9.3%)
differed by 50% or more when choosing one annotation
over the other. Such a large difference frequently results
from the gene definition differences in the annotations.
Genes with the same HUGO symbol in different gene
models can be defined as completely different genomic
regions. When choosing an annotation database, re-
searchers should keep in mind that no database is
perfect and some gene annotations might be inaccurate
or entirely wrong.
Wu et al. [27] suggested that when conducting

research that emphasizes reproducible and robust gene
expression estimates, a less complex genome annotation,
such as RefGene, might be preferred. When conducting
more exploratory research, a more complex genome
annotation, such as Ensembl, should be chosen. Based
upon our experience of RNA-Seq data analysis, we
recommend using RefGene annotation if RNA-Seq is
used as a replacement for a microarray in transcriptome
profiling. For human samples, Affymetrix GeneChip HT
HG-U133+ PM arrays are one of the most popular
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microarray platforms for transcriptome profiling, and
the genes covered by this chip overlap with RefGene
very well, according to Zhao et al. [6] h. Despite the fact
that Ensembl R74 contains 63,677 annotated gene en-
tries, only 22,810 entries (roughly one third) correspond
to protein coding genes. There are 17,057 entries repre-
senting various types of RNAs, including rRNA (566),
snoRNA (1549), snRNA (2067), miRNA (3361), mis-
c_RNA (2174), and lincRNA (7340). There are 15,583
pseudogenes in Ensembl R74. For most RNA-Seq sequen-
cing projects, only mRNAs are presumably enriched and
sequenced, and there is no point in mapping sequence
reads to RNAs such as miRNAs or lincRNAs. Ensembl
R74 contains 819 processed transcripts that were gener-
ated by reverse transcription of an mRNA transcript with
subsequent reintegration of the cDNA into the genome,
and are usually not actively expressed. In this scenario, a
read truly originating from an active mRNA can be
mapped to the processed transcript or mapped to the
processed transcript only, which is especially true for
junction reads. Consequently, the true expression for the
corresponding mRNA may be underestimated. Another
downside of using a larger annotation database is calcula-
tion of adjusted p values, because the adjustment of the
raw p value to allow for multiple testing is mainly deter-
mined by the number of genes in the model. If genes of
interest are defined inconsistently across different annota-
tions, it is recommended that the RNA-Seq dataset is
analyzed using different gene models.

Conclusions
RNA-Seq has become increasingly popular in transcrip-
tome profiling. Acquiring transcriptome expression pro-
files requires researchers to choose a genome annotation
for RNA-Seq data analysis. In this paper, we assessed the
impact of gene models on the mapping of junction and
non-junction reads, and compared the impact of genome
annotation choice on gene quantification and differential
analysis. To fairly assess the impact of a gene model on
RNA-Seq read mapping, we devised a two-stage map-
ping protocol, in which sequence reads that could not be
mapped to a reference transcriptome were filtered out,
and the remaining reads were mapped to the reference
genome with and without the use of a gene model in the
mapping step. Our protocol ensured that only those
reads compatible with a gene model were used to evalu-
ate the role of a genome annotation in RNA-Seq data
analysis.
Ensembl annotates more genes than RefGene and

UCSC. On average, 95% of non-junction reads were
mapped to exactly the same genomic location without
the use of a gene model. However, only an average of
53% junction reads remained mapped to the same gen-
omic regions. About 30% of junction reads failed to be
mapped without the assistance of a gene model, while
10–15% mapped alternatively. It is also demonstrated
that the effect of a gene model on the mapping of
sequence reads is significantly influenced by read length.
The mapping fidelity for a sequence read increases with
its length. When the read length was reduced from 75 bp
to 50 bp, the percentage of junction reads that remained
mapped to the same genomic regions dropped from 53%
to 42% without the assistance of gene annotation.
There are 21,958 common genes among RefGene,

Ensembl, and UCSC annotations. Using the dataset with
the read length of 75 bp, we compared the gene quantifi-
cation results in RefGene and Ensembl annotations, and
obtained identical counts for an average of 16.3% (about
one sixth) of genes. Twenty percent of genes are not
expressed, and thus have zero counts in both annota-
tions. About 28.1% of genes showed expression levels
that differed by 5% or higher; of these, the relative
expression levels for 9.3% of genes (equivalent to 2038)
differed by 50% or greater. The case studies revealed that
the difference in gene definitions caused the observed
inconsistency in gene quantification.

Methods
The Human Body Map 2.0 Project, using Illumina
sequencing, generated RNA-Seq data for 16 different hu-
man tissues (adipose, adrenal, brain, breast, colon, heart,
kidney, leukocyte, liver, lung, lymph node, ovary, pros-
tate, skeletal muscle, testis, and thyroid) and is accessible
from ArrayExpress (accession number E-MTAB-513).
To demonstrate the impact of read length on analysis
results, we created a new dataset in which each original
75-bp long sequence read was trimmed to 50 bp. The
same analysis protocol described below was applied to
both datasets. The RefGene, Ensembl, and UCSC anno-
tation files in GTF format were downloaded from the
UCSC genome browser.
Primary sequencing reads were first mapped to refer-

ence transcriptome and the human reference genome
GRCH37.3 using Omicsoft sequence aligner (OSA) [16].
Benchmarked with existing methods such as Tophat and
others, OSA improves mapping speed 4–10 fold, with
better sensitivity and fewer false positives. When a gene
model is used in conjunction with a reference genome,
by default, OSA maps RNA-Seq reads in three consecu-
tive steps: (1) all reads are mapped to the reference tran-
scriptome; (2) for mapped reads with mismatches, OSA
aligns them with the reference genome and chooses the
best hits; and (3) for unmapped reads, OSA maps them
to reference genome. OSA can be finely controlled, and
step #1 could be run alone if only those reads that could
be mapped to a reference transcriptome were desired.
As shown in Figure 9A, the mapping result of a sequence

read is gene model dependent. For instance, read #2 could



Figure 9 Analysis protocol. (A) The mapping result for a sequence read that is gene model dependent, where none of the gene models are
complete; (B) “two-stage” mapping protocol: at Stage #1, all RNA-Seq reads are mapped to a reference transcriptome only, and then only the
mapped reads are saved into a new FASTQ file; at Stage #2, those remaining reads are mapped to the genome with and without the use of a
gene model in the mapping step; (C) The protocol for classifying uniquely mapped sequence reads into four categories, i.e., “Identical”, “Alternative”,
“Multiple” and “Unmapped” (or Fail).
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be uniquely mapped to gene #b if the gene model #A was
chosen in the mapping step. However, this read became a
multipl-mapped read when either gene model #B or #C
was chosen, because it could be mapped to genes #b and
#e equally well. None of the gene models are complete;
therefore, we devised a two-stage mapping protocol to
investigate the effect of a gene model on RNA-Seq data
analysis (Figure 9B). At Stage #1, all RNA-Seq reads were
mapped to a reference transcriptome only, and then only
mapped reads are saved into a new FASTQ file. At Stage
#2, the remaining reads were mapped to a genome using
three different mapping modes: (1) “transcriptome only”,
every read was mapped to either a unique or multiple
locations in annotated regions; (2) “transcriptome only +
tune up”, similar to “transcriptome only”, but for those
mapped reads with mismatches, they were mapped to
genome as well, and the best hits were selected from the
mapping results. For ties, the read was mapped to refer-
ence transcriptome; and (3) “None”, reads were mapped
to reference genome directly, without the use of a gene
model in the mapping step. According to our results
(unpublished), there was only a small difference (less than
0.5% of reads) between “transcriptome only” and “tran-
scriptome only + tune up” modes. Therefore, to quantify
the effect of a gene model on mapping of RNA-Seq reads,
we only compared the results from “transcriptome only”
mode with those from the “None” mode in Stage #2.
Accordingly, the effect of a gene model on RNA-Seq

read mapping could be characterized and quantified by
comparing the mapping results in different mapping
modes. We focused on those uniquely mapped reads in
the “transcriptome only” mode, and divided them into
four categories (Figure 9C) according to their mapping
results without a gene annotation in mapping step: (1)
“Identical”, the same alignment results were obtained re-
gardless of the use of a gene model; (2) “Alternative”, the
read still mapped but mapped differently. It turns out
that the majority of reads in this category were junction
reads. A junction read could be either mapped as a
non-junction read, or remain mapped as a junction read
but with different start, end, and splicing positions; (3)
“Multiple”, a uniquely mapped read became a multiple-
mapped one. When a read is mapped across the whole
reference genome, it is more likely to be mapped to mul-
tiple locations; and (4) “Unmapped”, i.e., a read could
not be mapped to anywhere in the genome without the
assistance of a gene model. Nearly all reads in this
category were junction reads.

Additional file

Additional file 1: Tables S1 and S2. Report the mapping summaries
for all 16 tissue samples in different mapping modes when the read
Length is 75 bp and 50 bp, respectively. Tables S3 and S4 contain the
re-mapping summaries corresponding to the read length of 75 bp
and 50 bp, respectively. Reads not compatible with a gene model in
“transcriptome only” mode are filtered out first prior to re-mapping.
Tables S5 and S6 summarize the impact of the usage of a gene model
on the mapping of junction and non-junction reads in all 16 tissue samples.
The corresponding read lengths are 75 bp and 50 bp, respectively. Table S7
reports the distribution of the ratio of read counts between RefGene and
UCSC annotations. The read length is 75 bp. Figure S1 is the plot of the read
mapping summary for all 16 tissue samples in “transcriptome only” and
“transcriptome + genome” mapping modes. The read Length is 50 bp.
Figure S2 shows the impact of a gene model on the mapping of reads
when the read Length is 50 bp. Figure S3 quantifies the impact of a gene
model on the mapping of junction and non-junction reads. The read
Length is 50 bp. Figure S4 shows the EGFR quantification difference
between Ensembl and RefGene results from the difference in gene
definition. Figure S5 highlights the gene definition difference for SLC30A1
in Ensembl and RefGene. The exons region defined in Ensembl is almost 3
times as long as in RefGene. Figure S6 shows the gene definition difference
for PIGY in Ensembl and RefGene, and accordingly explains why the gene
quantification results dramatically differ from each other.
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