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This paper addresses the problem of task allocation in real-time distributed systems with the goal of maximizing the system
reliability, which has been shown to be NP-hard. We take account of the deadline constraint to formulate this problem and then
propose an algorithm called chaotic adaptive simulated annealing (XASA) to solve the problem. Firstly, XASA begins with chaotic
optimization which takes a chaotic walk in the solution space and generates several local minima; secondly XASA improves SA
algorithm via several adaptive schemes and continues to search the optimal based on the results of chaotic optimization. The
effectiveness of XASA is evaluated by comparing with traditional SA algorithm and improved SA algorithm. The results show

that XASA can achieve a satisfactory performance of speedup without loss of solution quality.

1. Introduction

In many application domains, (e.g., astronomy, genetic engi-
neering, and military systems), increased complexity and
scale has led to the need for more powerful computa-
tion resources; distributed systems (DS) have emerged as
a powerful platform for addressing this issue, alternating
to traditional high performance computing systems. DS
consists of a set of cooperating nodes (either homogeneous
or heterogeneous) communicating over the communication
links. An application running in a DS could be divided into
a number of tasks and executed concurrently on different
nodes in the system, referred to as the task allocation problem
(TAP). To improve the performance of DS, several studies
have been devoted to the TAP with the main concern on
the performance measures such as minimizing the execution
and communication cost [1-3], minimizing the application
turnaround time [4, 5], and achieving better fault tolerance
(6, 7].

On the other hand, the real-time property is required in
many DS (e.g., military systems). In such system, the appli-
cation should complete its work before deadline, not only
promising the logical correctness. While the complexity of DS
could increase the potential of system failure, because in such

a large and complex system, the nodes and communication
links failures are inevitable. Hence, the reliability is a crucial
requirement for DS, especially for the real-time DS (RTDS).

Distributed system reliability (DSR) has been defined
by Kumar et al. [8] as the probability for the successful
completion of distributed programs which requires that all
the allocated processors and involved communication links
are operational during the execution lifetime. Redundancy
and diversity is the traditional technique to attain better
reliability [6, 7, 9-14]. They process hardware and/or software
redundancy, hence impose extra cost. Moreover, in many
situations, the system configuration is fixed and we have no
freedom to introduce system redundancy. Task allocation is
the alternative way to improve DS reliability, and this method
does not require additional resources, neither hardware nor
software.

The TAP with the goal of maximizing the DSR is a
typical combinatorial optimization problem; unfortunately,
this has been shown to be NP-hard in strong sense, and
the computational complexity of optimal algorithms (e.g.,
branch and bound technique) is exponential in nature. We
cannot obtain the optimal results in reasonable time for large
scale problems. Hence, several heuristic and metaheuristic
algorithms have been implemented, such as genetic algorithm



(GA) [7, 14, 15], simulated annealing algorithm (SA) [16],
particle swarm optimization (PSO) [17], honeybee mating
optimization (HMO) [18], cat swarm optimization (CSO)
[19], and iterated greedy algorithm (IG) [20]. These algo-
rithms may obtain suboptimal results, but they can sharply
reduce the calculation time.

A common thread among these algorithms is that they all
start from a randomly chosen initial solution or a set of solu-
tions in the solution space and then repeat the exploration-
decision procedure until convergence and obtaining good
enough solutions (maybe suboptimal results) [21]. Here,
exploration means obtaining new solutions based on the cur-
rent solution, in SA algorithm; for instance, new solutions are
chosen from the neighbors of the current solution. Decision
is made after exploration: a new solution is either accepted
or rejected according to some rules, if the new solution is
accepted, then it becomes new current solution, and move
on, otherwise drop it, start new exploration. According to
a series of the exploration-decision procedures, the quality
of the obtained solutions becomes better and better until
meeting the termination condition which is often defined as
some convergent situations. Hence, the convergence speed of
algorithms is affected by the choice of initial solutions and
rules that are applied in the exploration-decision procedures.

Simulated annealing algorithm is one of the earliest and
most wildly used optimization approaches; it introduces
random factor in searching process and models the annealing
of solids as Metropolis process [22]. SA algorithm accepts
“worse” solution with some probabilities related to the cur-
rent temperature, so it can escape from the local optima and
find the global optimal solution. The convergence speed of
SA algorithm is depending on its initial solution and cooling
schedule.

Chaos is a bounded unstable dynamic behavior that
exhibits sensitive dependence on initial conditions and
includes infinite unstable periodic motions [23]. Although
it appears to be stochastic, it occurs in a deterministic
nonlinear system under deterministic conditions. In recent
years, chaotic optimization algorithm (COA) has aroused
intense interests due to its ergodicity, easy implementation,
and ability to escape local optima [24]. However, COA is
lack of heuristic, mostly needs a large number of iterations
to reach the global optimum, which means its convergence
speed is slow.

In this paper, we propose a combinational algorithm
called XASA (Chaotic Adaptive Simulated Annealing), where
X alludes to the Greek spelling of chaos (yaog) and which
is proposed to solve the TAP in RTDS with the goal of
maximizing the DSR. We take into account several kinds of
constraints including deadline. XASA starts from COA and
obtains several optima via its ergodicity, then SA algorithm
will operate based on these optima in relative smaller ranges
to find the best solution. This method can overcome the
slow convergence of SA algorithm and COA without loss of
solution quality.

The rest of this paper is organized as follows. Section 2
presents the related work in the application of SA algorithm
and Chaotic Optimization to the TAP, and the contributions
of this paper are stated. Section 3 describes the formulation
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of the TAP with the goal of maximizing reliability, and the
solution approach is presented in Section4 with some
details of implementation. Section 5 discusses the perfor-
mance evaluation of proposed algorithm according to sev-
eral experiments and analyses. And Section 6 concludes
this work.

2. Related Works

The idea of simulated annealing algorithm was proposed by
Metropolis et al. [22] in 1953, and was applied to optimization
problems by Kirkpatrick et al. [25] in 1983. To our knowledge,
the first application of SA algorithm to the TAP was made by
van Laarhoven et al. [26] in 1992, which applied SA algorithm
to a job shop scheduling problem. From then on, several
works [27-29] have been done that compare SA algorithm
to other optimization algorithms for problems related to
the TAP. Attiya and Hamam applied SA algorithm to solve
the TAP and compared it with branch-and-bound technique
in 2006 in terms of maximizing the reliability of DS [16];
extending this work, Faragardi et al. proposed improved SA
algorithms to solve this problem [30, 31], using the hybrid of
SA and tabu search with a nonmonotonic cooling schedule
in 2012 and adding systematic search of neighborhood and
memory to SA algorithm in 2013.

COA often combines with other optimization algorithm
to overcome its drawbacks and take advantage of its beneficial
property such as ergodicity, for example, chaotic simulated
annealing (CSA) [32], chaotic particle swarm optimization
(CPSO) [23], and chaotic improved imperialist competitive
algorithm (CICA) [33] et al. CSA was proposed by Chen and
Aihara [32] to solve combinatorial optimization problems in
1995, which used Hopfield neural networks. Then, several
other papers have expanded this work [34-37]. Mingjun
and Huanwen have proposed another version of CSA to
solve the optimization problem of continuous functions [38].
Most of these works focus on the application of continuous
functions optimization, while the method proposed by Chen
and Aihara is actually based on artificial neural network, not
SA algorithm. Ferens and Cook [39] adapted CSA developed
by Mingjun and Huanwen into the TAP in 2013, where
chaos was infused into a solution by setting the number
of perturbations made by the value of a chaotic variable.
However, this method does not make full use of the beneficial
property of COA and does not improve the convergence
speed either.

The present paper differs from the above mentioned
researches because it can combine the advantages of both two
algorithms. Firstly, with the ergodicity property, COA can get
the skeleton of solution space by chaotic walking in it, thereby,
preventing the result from falling into local optima. Secondly,
based on the results of COA, we can easily determine the
cooling schedule of SA algorithm which is very important to
the performance of SA algorithm but hard to deal with. Lastly,
several adaptive schemes are used in SA algorithm; all these
schemes including COA preliminary results can increase the
convergence speed significantly.
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FIGURE 1: Results of the evaluation.

3. Problem Statement

We consider a heterogeneous DS that runs a real-time appli-
cation. Each node of DS may have different processing speed,
memory size, and failure rate. Moreover, the communication
links may also have different bandwidth and failure rate. The
state of nodes and communication links is either operational
or failed, and the failure events are statistically independent.
We also assume that the failure rates of nodes and communi-
cation links are constant.

There are M tasks to be executed on a DS with N nodes,
and M > N for most cases. Tasks executed on the node
require resources, including processing load resources and
memory space. Additionally, two tasks executed on different
nodes require communication bandwidth to communicate
with each other. Figure 1 illustrates a simple case consisting
of 5 tasks and 3 nodes. An application running on DS can be
represented by a task interaction graph G(V, E) as shown in
Figure 1(b), where V represents a set of tasks and E represents
the interactions between two tasks. Each task i € V is
associated with two properties: {g;;» iy, - --> Q) represents
the execution time of the task at different node and [s; m;]
represents the processing load and memory requirements of
the task. And the label of each edge (i, j) € E represents the
communication requirements among tasks.

The purpose of this work is to find a task assignment
that all M tasks are assigned to N nodes (note that one task
should be assigned to one and only one node, while one
node can execute multitasks or none), so that the overall
system reliability is maximized, the deadline and other
requirements of tasks are satisfied, and the capacities of the
system resources are not violated.

3.1. Notations. The notations that are used to formulate the
problem are listed in Abbreviation Section.

3.2. System Reliability. Reliability of a distributed system may
be defined as the probability that the system can run the entire
application successfully [7, 14, 40]. Due to the independence
of the failures of the node and path, the system reliability is the
product of the components reliabilities. Which is the product
of the reliabilities of all nodes and communication links.

We assume that all components of the node except
processor are perfect, which means the reliability of the node
equals the reliability of its processor. The reliability of the
processor at time ¢ is e Mt [16]; under a task assignment X,
the total execution time of tasks that are assigned to pj is
Zf\fl X;reix> so the reliability of the node py is

M
R, (X) = o M Lit Xk o

Similarly, the reliability of the communication link [,
at time t is e ', under a task assignment X; the total
communication time via I, is Y, Yitj XikX jp(Gj/ W), s0 the
reliability of the communication link [, is

Ry (X) =e ¥ T T XXy (G Op) )

Hence, we obtain the reliability of the system:

N N-1 N
RX) =[[ReCOT] [T Rw ) =7, (3)
k=1

k=1b=k+1

where
N M

Y (X)= Zzlkxikeik

k=1i=1

(4)

N N M

* Z Z qu’kbxikij <:);:b>

k=1b=k+1i=1i#]

3.3. Constraints. In order to achieve a satisfactory allocation,
there are several basic constraints of the TAP in RTDS
that should be met. Traditionally, the aim of allocation
constraints is devoted to not violate the availability of the
system resources, like memory capacity. While the deadline
requirement should be met for real-time property as well.

(i) Memory Constraint. The total amount of memory require-
ments of tasks assigned to a node should not exceed the
capacity of the node. That is,

M
Zmixik <M, Vkell,N]. (5)

i=1



(ii) Computation Resource Constraints. The total amount of
computation resource requirements of tasks assigned to a
node should not exceed the capacity of the node. That is,

M
Y sxy < S Vk e [LN]. (6)

i=1

(iii) Communication Resource Constraints. The total amount
of communication resource requirements of tasks via a
communication link should not exceed the capacity of the
link. That is,

M
Y ejxuxp <Cp 1<k<b<N. (7)
i=1j#i

(iv) Deadline Constraints. All tasks should complete execution
before their deadline. Since there is no priority of tasks, all
tasks that are assigned to a node can execute in any order. We
should take account of the worst case, that is, considering task
always executed at last. Hence, the deadline constraints is

N M
Y xu Y epxy <d, Viel[l,M]. (8)
k=1 j=1

3.4. Problem Formulation. According to the above discus-
sion, we can tell that maximizing the reliability of RTDS is
equivalent to minimizing the object function Y (X), with all
constraints mentioned before. Hence, we can formulate the
TAP by the following combinatorial optimization problem:

min Y (X)
(5) ~ (8).

)

subject to

4. Task Allocation Solution

This section describes basic SA algorithm briefly at first, with
the discussion of the cooling schedule which has a significant
effect on its convergence speed then presents the XASA and
explains the details of how it can be applied into the TAP in
terms of the statement proposed in this paper.

4.1. Basic Simulated Annealing Algorithm. The SA algorithm
starts from a randomly chosen initial solution and generates
a series of Markov chains according to the descent of
the control parameter (i.e., temperature). In these Markov
chains, a new solution is chosen by making a small random
perturbation of the solution, and, if the new solution is better,
then it is kept, but if it is worse it is kept with some probability
related to the current temperature and the difference between
the new solution and the previous solution. According to a
series of iteration of solutions, an optimal one was found. The
SA algorithm applied in the TAP is listed as follows.

Step 1. Choose an initial task arrangement (X,) at random.

Step 2. Calculate the cost (f;) of X,.
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Step 3. Set the initial solution as the optimal f* « f,, X* «
X.

N

Step 4. Initialize the temperature (T = T}).
Step 5. Select a neighbor (X,,) of X..
Step 6. Calculate the cost (f,,) of X,

Step 7. It f, < f,, then X; « X, and f, « f,, otherwise go
to Step 9.

Step 8. If f,, < f*,then X* « X, and f* « f,,, goto Step 10.

Step 9. Ifrandom(0, 1) < e”/»/)/T then X, « X, and f, «
o

Step 10. Repeat Step5 to Step 9 for a given number of
iterations.

Step 11. Reduce the temperature via some cooling function

T = f(T).

Step 12. If the termination condition is satisfied (e.g. T < T/),
then go to Step 13, otherwise go to Step 5.

Step 13. Output the solution.

Note that the neighborhood defines the procedure to
move from a solution point to another solution point [16].
In this paper, a neighbor is obtained by randomly choosing a
task i among M tasks and replacing its current assigned node
with another randomly selected one.

4.2. Cooling Schedule. It has been shown that the SA algo-
rithm converges to the global optimal with probability 1 [41],
which needs a sufficiently slow cooling schedule (i.e., suffi-
cient hot initial temperature, sufficient low final temperature,
and sufficient slow cooling speed). However, the required
slow cooling schedule may lead to an unacceptably long
solution convergence time which can be exponential.

The cooling schedule is a set of parameters, which
controls the procedure of SA algorithm so that it can be
asymptotic converge to a suboptimal in reasonable time. The
cooling schedule is made up of these parameters.

(i) The Initial Value of the Control Parameter (i.e., Tem-
perature) T,,. The initial temperature represents one of the
most important parameters in SA algorithm. If the initial
temperature is very high, it will take very long time to be
convergent. On the other hand, poor solutions are obtained
if the initial temperature is low. A basic principle of choosing
initial temperature is that the acceptance probability of
worse solutions is close to 1. Which means the exchanging
of neighboring solutions should be almost freely at first.
Hence, we can determine the initial temperature T, via initial
acceptance probability of worse solution P,. In this paper, P,
issettobe 0.9. P, = e 2T where A is the difference between
the neighboring solutions, so T, = —A/In P,. We can use the
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A = foue = fin as the estimation of A, where f, .. and fo;,
is the maximum and minimum of energy function among
randomly chosen K solutions. So the initial temperature T},
is determined by the following formula:

fmin - fmax
T = 1
0 Inp, (10)

(ii) The Cooling Function F(T). The cooling function defines
the cooling method of temperature T'. A commonly used type
of cooling function is exponential descent function: F(T) =
oT, where « is constant and & < 1. So that the cooling speed
depends on the parameter o, and we call it the cooling factor.
A large value of « represents slow cooling, which yields good
solution, but expensive in time. « is set to be slightly less than
1 in the most reported literatures, and it is chosen to be 0.95
in this paper.

(iii) The Final Value of Control Parameter Ty, Termination
Condition in Another Word. The criterion for termination can
be either final temperature or steady state of the system. The
former one can control the total calculation time, but not
the solution quality: a given final temperature may introduce
calculation redundancy for small scale problem but obtain
poor solution for large scale problem. On the other hand, the
latter one can take into account both time and quality. In this
paper, the SA algorithm will terminate if the solution remains
unchanged (neither upgrading nor downgrading) for a given
number of iterations. The number of iterations that solution
remains unchanged is chosen to be M x N. Furthermore,
the validation of the final solution should be satisfied as well,
which will be discussed later.

(iv) The Length of Markov Chain L. It is the number of inner
loop repetitions. This parameter is chosen to be M x (N — 1),
which is the size of solution neighborhood, because each task
can be assigned to another N — 1 nodes.

The cooling schedule has a significant effect on the
results of the algorithm, especially on the convergence speed.
Besides, the initial solution of SA algorithm can affect the
convergence speed as well.

4.3. Chaotic Optimization Algorithm. The chaotic variables
are produced by the following well-known one-dimensional
logistic map:

Zikm =4z (1-2), k=0,1,..., (11)
where y = 4, z, € [0,1]. The logistic map has special
characters such as the ergodicity, stochastic property and
sensitivity dependence on initial conditions. The chaotic
optimization algorithm applied in this paper is listed as
follows.

Step 1. Initialize the chaotic vector Z at random, note that
the value of chaotic variables cannot be 0, 0.25, 0.5, 0.75, and
1.0, which are the fixed points of logistic map, and all chaotic
variables are different from each other.

Generate K chaotic vectors at random,
each vector contains M variables

|Calculate corresponding K solutions A and their costs|

| Search the solution space via COA |%

The new solution s is better
than the worst one of A

| Replace the worst solution of A by s |

ermination of COA

Yes

Determine the cooling schedule of SA
according to K optimized solutions

Choose the best one of K optimized
solutions to be the initial solution of SA|

Search the optimal solution by SA |

End

FIGURE 2: The flowchart of XASA.

Step 2. Generate the solution vector A via Z, then generate
the task assignment X via A and calculate the cost function

f.

Step 3. Set the initial solution as the optimal f* = f,Z" = Z.
Step 4. Calculate new chaotic vector Z via formula [9].

Step 5. Generate X as Step 2, calculate the cost function f.
Step 6. If f < f*, then f* = f,Z" = Z.

Step 7. Repeat Steps 4, 5, and 6, until f* remains unchanged
for a given number of iterations.

Note that the iteration number in Step 7 is chosen to be
as same as SA algorithm, which is discussed before, while the
validation of the solution is not required in COA, since it is
not heuristic and it will take very long time to get convergence
if there are few valid solutions in large scale cases.

4.4. Simulated Annealing Algorithm Combined with Chaos.
The basic idea of our proposed algorithm is simulated anneal-
ing combined with chaotic search and adding some adaptive
schemes to the cooling schedule so that we can improve
the convergence speed without loss of solution quality. The
flowchart of XASA is shown in Figure 2.



There are 4 schemes to speed up the convergence of SA
algorithm.

First, we apply COA to find K optimized solutions, which is
a preliminary search in the solution space and the solution
distribution can be found according to the ergodicity of
chaos system. Hence, we can search optimal solution via SA
algorithm in a relative smaller range with optimized initial
solution.

Second, the initial temperature T, can also be smaller based
on the results of COA because we can replace the f, ., and
fmin With that of K optimized solutions.

Third, the length of Markov chain L is constant in SA
algorithm, while it is adaptive in XASA. The algorithm will
jump out of the inner loop if the rejections of new solution
exceed a given threshold 0. The threshold is given by the
formula: 0 = min(L,x§;,0x8,) at each temperature. Because
P, is set to be 0.9, we can set the initial value of 0 to be
[L;%0.05].d; represents the maximum threshold, and §; < 1;
in this paper, it is set to be 0.6; §, represents the increasing
speed of 6, this is similar to the cooling factor «, so it is set to
be 1.05.

Fourth, the cooling factor « is adaptive in XASA as well: the
more solutions are accepted (both better and worse solutions)
at the current temperature, the smaller the cooling factor
is, and vice versa. The rationale is that high temperature at
the beginning of the algorithm generates numerous solution
acceptances; thus, a rapid reduction of temperature can be
made, while fewer solutions will be accepted as the temper-
ature is cooling down; thus, a slow cooling speed should be
applied since we need carefully a solution search. Hence, the
cooling factor of XASA is a' = a x e ™®* where « is
the acceptance number of last inner loop, and # is the actual
length of Markov chains. Note that « € [0,1], so g1/ terxn)
[0.8187,1] and ' € [0.7778,0.95].

To implement the algorithm, some details should be
presented as follows.

(1) Solution Representation. In this paper, solutions are pre-
sented with a vector A(M,1); each element represents a task,
its value is between 1 and N, denoting which node this task
is assigned to. In order to apply COA, we use a chaotic vector
Z related to A(M, 1), where A = [Z x (N — 1) + 1]. A task
assignment X of the TAP is generated by A as follows:

1, k=A(3), ,2, M,
. N.

X(i’k)z{o k+AG), k=1,2,.. (12)

(2) Energy Function. We integrate the object function Y (X)
and all constraints into a cost function to fit the SA algorithm
framework. And the cost function is used as the energy
function.
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All constraints are formulated as penalty functions as
follows:

N
Ey = Zmax(O

k=1

N M
Eg = Z max (0, Zsixik - Sk> ,
i=1

k=1
XikXip ~ Ckb) >

SR

max Zx,kZ(Z]kx]k
k=1

j=1

M
’Zmixik -M |,

i=1

(13)

M
0,2 ¢

i=1i#j

Mz

k

I
—

Mz

Ep=

I
—_

As all constraints are of the same importance, we use a
common coefficient y for all penalty function. Hence, the
energy function is

fX)=Y(X)+y(Ey+Es+Ec+Ep). (14)

The criterion of choosing penalty function coeflicient y is
that it should scale the values of the penalty functions to the
comparable values as that of object function Y (X) such that
the procedures of the algorithm will be toward the direction
of penalty avoiding; hence, the valid solution can be found
with high probability. Besides, the validation of a solution can
be represented as f(X) = Y(X).

5. Performance Evaluation

To evaluate the performance of the proposed algorithm, both
SA and XASA are coded in Matlab and tested for numerous
randomly generated task sets that are allocated onto a RTDS.
There are two variations of SA algorithm implemented in this
paper, the traditional one (SAI) and the improved one (SA2).
SA2 applies the last two adaptive schemes of XASA, that
is, adaptive length of Markov chains and cooling factor. All
other components of SA2 are as same as SAl, including initial
solution, initial temperature, and termination condition. The
used computation system is Matlab 7.11.0, with Intel Core i7-
2600 @ 3.40 GHz and 16 Gb main memory under a Windows
7 environment.

5.1. Experiment Parameters Settings. All DS parameters are
followed by the former researches [16, 17, 40]. The failure
rates of processors and communication links are given in
the ranges [0.00005-0.00010] and [0.00015-0.00030], respec-
tively. The time of processing a task at different processors is
given in the range [15-25]. The memory requirement of each
task and node memory capacity is given in the range [1-10]
and [100-200], respectively. The task processing load versus
node processing capacity is given in the ranges [1-50] and
[100-300]. The value of data to be communicated between
tasks is given in the range [5-10]. The bandwidth and load
capacity of communication links are given in the ranges [1-4]
and [100-200]. The range of task deadline value is [10-200].
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TABLE 1: Simulation results for the case of 12 nodes.

Cases XASA SAl SA2 At At At AR, AR,
N M Ravg tavg Ravg tavg Ravg tzwg
16 0.9349 3.336 0.9361 39.266 0.9353 10.409 91.50% 67.95% 73.49% 0.13% 0.04%
18 0.9135 3.914 0.9152 50.188 0.9151 13.237 92.20% 70.43% 73.62% 0.18% 0.17%
12 20 0.8948 4.014 0.8992 57.456 0.8968 14.454 93.01% 72.23% 74.84% 0.49% 0.22%
22 0.8733 4918 0.8781 55.815 0.8777 14.474 91.19% 66.02% 74.07% 0.55% 0.50%
25 0.8299 5.325 0.8373 84.469 0.8367 22.463 93.70%  76.30% 73.41% 0.89% 0.81%
40 0.6000 23.187 0.6048 377104 0.6028 96.961 93.85% 76.09% 74.29% 0.79% 0.47%
45 0.5320 36.523 0.5334 484.005 0.5329 123.667 92.45% 70.47% 74.45% 0.25% 0.16%
25 50 0.4537 36.300 0.4553 606.927 0.4565 161.550 94.02% 77.53% 73.38% 0.35% 0.61%
55 0.3732 57.156 0.3753 720.068 0.3726 195.631 92.06% 70.78% 72.83% 0.58% —0.14%
60 0.2866 157.777 0.2886 795.438 0.2860 217155 80.16% 27.34% 72.70% 0.71% —-0.19%
Average 91.42% 67.51% 73.71% 0.49% 0.27%
TABLE 2: Simulation results for the case of 12 nodes.
Cases XASA SA1 SA2
N M Rstd tstd Vl VZ Rstd tstd \4 Rstd tstd |4
16 0.0016 0.3035 91.10% 100.00% 0.0019 0.8582 99.99% 0.0013 0.6208 100.00%
18 0.0008 0.6041 85.57% 100.00% 0.0020 0.9552 98.76% 0.0018 0.8322 99.21%
12 20 0.0062 0.4114 72.39% 100.00% 0.0029 1.3870 98.12% 0.0036 0.3914 97.63%
22 0.0016 0.6186 54.30% 100.00% 0.0015 1.3489 93.23% 0.0017 0.5886 94.07%
25 0.0049 0.7613 29.27% 99.82% 0.0038 2.9824 85.99% 0.0031 1.2888 86.88%
40 0.0042 1.5797 21.67% 99.87% 0.0026 8.7429 89.62% 0.0027 4.6770 91.39%
45 0.0014 5.4829 9.85% 99.67% 0.0024 12.3919 76.51% 0.0027 3.4313 81.95%
25 50 0.0039 5.6073 2.06% 99.30% 0.0030 11.4135 71.62% 0.0025 11.0605 79.76%
55 0.0028 8.1346 0.16% 96.58% 0.0019 8.9093 58.05% 0.0023 7.7128 67.33%
60 0.0022 9.3194 0.03% 89.76% 0.0016 15.5811 55.63% 0.0022 8.4473 67.03%
Average 0.0029 3.2823 36.64% 98.50% 0.0024 6.4570 82.75% 0.0024 3.9051 86.53%

The network topology is star, N is set to be 12 and 25,
and M is set to be [16, 18,20, 22,25] and [40, 45, 50, 55, 60]
for two cases, respectively. The coefficient of penalty function
y is set to be 1. The number of randomly chosen solutions
at the beginning of the algorithm is set to be K = 10. And
the initial solution of the two SA algorithms is one of these
K solutions which is chosen at random. Because SA is a
stochastic algorithm, each independent run of the algorithm
on a same application may yield different result, we, thus, run
all of the three algorithms on an application 10 times and
obtain the average values.

5.2. Experiment Results. Table1 summarizes the reliability
and calculation time of all TAPs by deploying the XASA
and other two SA algorithms. The title R with suffix avg
represents Reliability with the average value of 10 independent
runs, and T represents Time where the unit is second. Aty
is the acceleration ratio of XASA versus SAl, where At; =
(tsa1 — txasa)/tsar % 100%. At, and At; is the acceleration
ratio of XASA versus SA2 and SA2 versus SAl, respectively.
AR represents the average deviation in percentage between
XASA and SA algorithms in terms of reliability, where AR; =
(Ren; — Ryasa)/Roa; X 100%, 7 = 1,2,

The comparative results from Table 1 show that XASA
can sharply reduce the convergence time against the other
two SA algorithms, while the solution quality (i.e., reliability)
is slightly worse (less than 0.01 in terms of value and 1%
in percentage). Note that the value of At; is steady in the
range of 72% ~ 75% with small variation, which means the
third and fourth adaptive schemes take a fixed effect on the
SA algorithm. Furthermore, At, is steady in all cases except
the last one (N = 25, M = 60) as well, which has an
average value of 92.66% with standard deviation 0.1036. In
our preliminary experiments, the value of function Y (X) is
always below 2 during the whole algorithm, while the value
of the penalty function can be hundreds. Besides, according
to the experiment parameters set in this paper, there is no
significant difference between nodes, nor do the tasks. Hence,
there are lots of local minima in the solution space without
considering the validation of solutions. Constraints are easy
to be satisfied when the problem scale is small, so COA can
obtain several valid solutions, and the initial temperature for
the SA algorithm in the next step of XASA can be relatively
small; therefore, it is fast to get convergence. On the other
hand, COA can hardly obtain valid solutions in the case of
large scale (e.g., N = 25, M = 60 in this paper), if there
are insufficient valid solutions (less than K), a large initial
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FIGURE 3: Energy function at each iteration for N = 12, M = 20.

temperature will be set because of the giant value of penalty
function, this will affect the convergence speed significantly.
Additionally, constraints are not so easy to be satisfied when
problem scale is large, so there are much less local minima in
the solution space; this will slow down the convergence speed
as well. All these factors weaken the speedup effect based on
COA, so the performance in the last case is not so good.

Table 2 shows some overall statics characters of all three
algorithms. Where the R4 and t 4 represent the standard
deviation of reliability and calculation time, V| represents
the valid solutions in percentage of COA in XASA and V,
represents that of inSA (inSA represents the SA algorithm in
XASA), the other two V' columns have the same meaning. As
we can see, XASA is the best in terms of mean value of time
standard deviation, and there is no case that SA1 excels XASA
in this criterion. V, gets the best result compared to other two
algorithms as well. Note that V, shows poor results in the large
cases, this is an evidence for our analysis of the large scale
issue presented before.

5.3. Time Series Analysis. Figure 3 shows the values of the
energy function, which are calculated at each iteration of the
algorithms for the case N = 12, M = 20. Note that the values
of the invalid solutions are set to be 0.22, because the real
values of the invalid solutions are too large, and they may
conceal the details of the valid ones.

As we can see, COA cannot guarantee the validation of
the solutions, it is completely stochastic without heuristic.
However, it can generate a good start for the next step of
XASA, which is shown in the results of inSA, where all
solutions are valid and the convergence speed is quite fast.
The inSA begins to reach to the good enough solutions before
2000 iterations. The other two SA algorithms start with the
worse condition, and spend much more iterations to reach
to the good enough solutions. They both need thousands
of iterations to explore the solution space which generates
lots of invalid solutions as COA but the cost is much more
expensive. Because of the adaptive schemes, SA2 can quickly
pass through invalid solutions as can be seen in Figure 3.
Hence, these schemes are effective.
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Figure 4 shows the details of the adaptive cooling sched-
ule schemes, which are calculated at each cooling step of
the algorithms for the case N = 12, M = 20. The left
three figures are the results of inSA, and right ones are the
results of SA2. Note that the temperature in Figures 4(c) and
4(f) is set to be unitary. At the beginning of the cooling
steps, the acceptance rates of the new solutions are both high
in two algorithms; hence, the cooling factor is small, and
the temperature reduces rapidly, while the actual length of
Markov chains n is much smaller in inSA than SA2, and
the cooling factor increases faster as well. It is caused by
the differences of the initial temperature and initial solution,
since inSA and SA2 are actually the same. Hence, COA can
truly improve the convergence speed.

Figure 5 shows the details of the case N = 25, M = 60
where the invalid solution values are set to be 1.7. The result
of COA is quite bad, only three valid solutions are found;
therefore, inSA cannot get a good start and it has to explore
wide solution space at the beginning which generates lots of
invalid solutions.

Figure 6 shows the results of the case N = 25, M = 60 as
Figure 4. The cooling factor and temperature curve are not so
different between inSA and SA2, and the character n cannot
bring as much benefit as before. These cause the inefficient
situation of the largest case.

6. Conclusions

In this paper, we consider a heterogeneous DS that runs a real-
time application, to achieve maximization of system reliabil-
ity with task allocation technique. By formulating the reliabil-
ity and constraints, we model this problem as a combinatorial
problem. To solve this problem with fast convergence speed,
we improve the well-known simulated annealing algorithm
based on the analysis of the cooling schedule of SA algorithm
which has a significant effect on its convergence speed.
Then, we propose the algorithm XASA, which combines SA
algorithm with chaotic optimization algorithm with several
adaptive schemes. The experimental results show that the
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proposed algorithm can achieve a satisfactory performance
of speedup, while the solution quality is just slightly worse.

Notations

M: Number of tasks

N: Number of nodes

Pr: Nodek

Task i

L,:  Communication link between p; and p,
Xy: Whether or not ¢; is on p;

e;: Execution time of t; on py

¢;; Communication cost between f; and ¢;
Cip: Communication capacity of [,

wyy,: Bandwidth of [,

Ai: Failure rate of p;

@yp: Failure rate of [,

Memory required by ¢;

M,: Memory capacity of py

s Processing load of t;

Si: Processing capacity of py
d;:  Deadline of t;.
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