35 research outputs found
Human native lipoprotein-induced de novo DNA methylation is associated with repression of inflammatory genes in THP-1 macrophages
<p>Abstract</p> <p>Background</p> <p>We previously showed that a VLDL- and LDL-rich mix of human native lipoproteins induces a set of repressive epigenetic marks, <it>i.e. de novo </it>DNA methylation, histone 4 hypoacetylation and histone 4 lysine 20 (H4K20) hypermethylation in THP-1 macrophages. Here, we: 1) ask what gene expression changes accompany these epigenetic responses; 2) test the involvement of candidate factors mediating the latter. We exploited genome expression arrays to identify target genes for lipoprotein-induced silencing, in addition to RNAi and expression studies to test the involvement of candidate mediating factors. The study was conducted in human THP-1 macrophages.</p> <p>Results</p> <p>Native lipoprotein-induced <it>de novo </it>DNA methylation was associated with a general repression of various critical genes for macrophage function, including pro-inflammatory genes. Lipoproteins showed differential effects on epigenetic marks, as <it>de novo </it>DNA methylation was induced by VLDL and to a lesser extent by LDL, but not by HDL, and VLDL induced H4K20 hypermethylation, while HDL caused H4 deacetylation. The analysis of candidate factors mediating VLDL-induced DNA hypermethylation revealed that this response was: 1) surprisingly, mediated exclusively by the canonical maintenance DNA methyltransferase DNMT1, and 2) independent of the Dicer/micro-RNA pathway.</p> <p>Conclusions</p> <p>Our work provides novel insights into epigenetic gene regulation by native lipoproteins. Furthermore, we provide an example of DNMT1 acting as a <it>de novo </it>DNA methyltransferase independently of canonical <it>de novo </it>enzymes, and show proof of principle that <it>de novo </it>DNA methylation can occur independently of a functional Dicer/micro-RNA pathway in mammals.</p
Interaction between Coastal and Oceanic Ecosystems of the Western and Central Pacific Ocean through Predator-Prey Relationship Studies
The Western and Central Pacific Ocean sustains the highest tuna production in the world. This province is also characterized by many islands and a complex bathymetry that induces specific current circulation patterns with the potential to create a high degree of interaction between coastal and oceanic ecosystems. Based on a large dataset of oceanic predator stomach contents, our study used generalized linear models to explore the coastal-oceanic system interaction by analyzing predator-prey relationship. We show that reef organisms are a frequent prey of oceanic predators. Predator species such as albacore (Thunnus alalunga) and yellowfin tuna (Thunnus albacares) frequently consume reef prey with higher probability of consumption closer to land and in the western part of the Pacific Ocean. For surface-caught-predators consuming reef prey, this prey type represents about one third of the diet of predators smaller than 50 cm. The proportion decreases with increasing fish size. For predators caught at depth and consuming reef prey, the proportion varies with predator species but generally represents less than 10%. The annual consumption of reef prey by the yellowfin tuna population was estimated at 0.8±0.40CV million tonnes or 2.17×1012±0.40CV individuals. This represents 6.1%±0.17CV in weight of their diet. Our analyses identify some of the patterns of coastal-oceanic ecosystem interactions at a large scale and provides an estimate of annual consumption of reef prey by oceanic predators
The bovine tubouterine junction: general innervation pattern and distribution of adrenergic, cholinergic, and peptidergic nerve fibers
Transient Convection-Diffusion-Reaction Problems with Variable Velocity Field by Means of DRBEM with Different Radial Basis Functions
A Postclassic Maya mass grave from Zacpetén, Guatemala
Here we present a bioarchaeological analysis of a Postclassic (ca. A.D. 950-1524) Maya mass grave from the site of Zacpetén in northern Guatemala. Osteological and spatial analyses (including a Ripley\u27s K function) found evidence of cutting, drilling, and grinding of long bones and teeth as well as the intentional removal and manipulation of skeletal elements based on the left or right sides of the body. The remains were enveloped in layers of cut blocks and fist-sized chunks of white limestone and were placed in a depression on the western side of the ceremonial core of the site. The western orientation of the depression was explicitly associated with the underworld in contrast with the temple on the eastern side of the ceremonial core. The grave was the product of exhumation and violation of enemies\u27 bodies, sacrifice, or the burial of war dead (or some combination thereof) and was created when the Kowoj group emerged as a political force in the Petén lakes region. It served to symbolically rupture the past inhabitants\u27 links to the site and to create an enduring symbol of their defeat
