49 research outputs found
Micro-CT study of the dehiscences of the tympanic segment of the facial canal
PURPOSE: To depict the anatomy of the tympanic segment of the facial canal using a 3D visualization technique, to detect dehiscences, and to evaluate their frequency, location, shape, and size. METHODS: Research included 36 human temporal bones (18 infant and 18 adult samples) which were scanned using a Nanotom 180N device. The final resolution of the reconstructed object was 18 µm. Obtained micro-CT data were subsequently processed by the volume rendering software. RESULTS: The micro-CT study allowed for the 3D visualization of the tympanic segment of the facial canal and detects dehiscences in the studied material in both infants and adults. Most of the dehiscences (66.7 %) involved the inferior wall of the tympanic segment in infants as well as in adults, and were located above and backward to the oval window. The most frequent dehiscence shape was elliptic (66.7 % in infants; 50 % in adults). Furthermore, we observed dehiscences of fusiform and trapezoidal shape in infants. Length of the dehiscences in most cases ranged from 0.5 to 1.4 mm (50 % in infants; 75 % in adults). CONCLUSIONS: Volumetric reconstructions demonstrated the course of the tympanic segment of the facial canal and its relationship with the tympanic cavity. Knowledge about the size and location of any dehiscence within the tympanic segment of the facial canal is necessary due to the surgical significance of this region. If a dehiscence occurs, there is an increased risk of injury to the facial nerve during the operations or spread of inflammation from the middle ear
Fatigue fracture morphology of AISI H13 steel obtained by additive manufacturing
DEC-10/2021/IDUB/IV.2/EUROPIUM
030/RID/2018/19The paper focuses on researching the effect of fatigue loading on metallic structure, lifetime, and fracture surface topographies in AISI H13 steel specimens obtained by selective laser melting (SLM). The topography of the fracture surfaces was measured over their entire area, according to the entire total area method, with an optical three-dimensional surface measurement system. The fatigue results of the SLM 3D printed steel specimens were compared with those reported for conventionally manufactured 13H steel. The investigation also considers the roughness of the specimens’ side surface. Moreover, the fractographic evaluation conducted using scanning electron microscopy confirms that the predominant fracture mechanism is transgranular fracture. Microtomography done after mechanical loading also showed the influence of the stress level on the porosity distribution. Both fractographic and Micro-CT investigations confirm that higher stresses result in coarser and much more uniform porosity observed in fractured samples. These comprehensive quantitative and qualitative fracture analyses are beneficial to predict the failure conditions of SLM steel parts, especially in the case of fatigue damage. From the quantitative analysis of the H13 SLM-manufactured fracture surface topography, it was possible to conclude that the larger the loadings acting on the specimen, the rougher the fracture surface because the ductile fracture mode dominates. It has also been proven that the porosity degree changes along the length of the sample for the most stressed specimens.publishersversionepub_ahead_of_prin
The Influence of Soldering Profile on the Thermal Parameters of Insulated Gate Bipolar Transistors (IGBTs)
The effect of solder joint fabrication on the thermal properties of IGBTs soldered onto glass-epoxy substrate (FR4) was investigated. Glass-epoxy substrate with a thickness of 1.50 mm covered with a 35μm thick Cu layer were used. A surface finish was prepared from a HAL (hot air leveling) Sn99Cu0.7Ag0.3 layer with a thickness of 1÷40 μm. IGBT transistors NGB8207BN were soldered with SACX0307 (Sn99Ag0.3Cu0.7) paste. The samples were soldered in different soldering ovens and at different temperature profiles. The thermal impedance Zth(t) and thermal resistance Rth of the samples were measured. Microstructural and voids analyzes were performed. It was found that the differences for different samples reached 15% and 20% for Zth(t) and Rth, respectively. Although the ratio of the gas voids in the solder joints varied between 3% and 30%, no correlation between the void ratios and Rth increases was found. In the case of the different soldering tech-nologies the microstructure of the solder joint showed significant differences in the thickness of the IMC (intermetallic compounds) layer; these differences correlate well with the time above liquidus during the soldering process. The thermal parameters of IGBTs could be changed due to the increased thermal conductivity of IMC layer as compared to the thermal conductivity of the solder bulk. Our research highlighted the importance of the soldering technology used and the thermal profile in the case of the assembly of IGBT components
Metal foams as novel catalyst support in environmental processes
Metal foams are considered as promising catalyst carriers due to their high porosity, large specific surface area, and satisfactory thermal and mechanical stability. The study presents heat transfer and pressure drop experiments performed for seven foams of different pore densities made from diverse metals. Mass transfer characteristics are derived using the Chilton–Colburn analogy. It was found that the foams display much more intense heat/mass transfer than a monolith, comparable to packed bed. Next, the foams’ efficiencies have been compared, using 1D reactor modeling, in catalytic reactions displaying either slower (selective catalytic reduction of NOx) or faster kinetics (catalytic methane combustion). For the slow kinetics, the influence of carrier specific surface area at which catalyst can be deposited (i.e., catalyst amount) was decisive to achieve high process conversion and short reactor. For this case, monolith appears as the best choice assuming it’s the lowest pressure drop. For the fast reaction, the mass transfer becomes the limiting parameter, thus solid foams are the best solution
INFLUENCE OF PRINTING AND LOADING DIRECTION ON MECHANICAL RESPONSE IN 3D PRINTED MODELS OF HUMAN TRABECULAR BONE
The paper deals with investigation on directional variations of mechanical response in 3D printed models of human trabecular bone. Sample of trabecular bone tissue was resected from human donor and 3D model was obtained by X-ray computed tomography. Then a series of cubical samples was prepared by additive manufacturing technique and tested by uniaxial compression loading mode. Mechanical response was compared in nine different combinations of direction of 3D printing and loading direction. The results show neglectible influence on the deformation response in elastic region (stiffness) and significant changes of the behaviour in plastic region (stress and strain at yield point, strain at full collapse)