145 research outputs found
Experimental investigation of the few-nucleon dynamics in deuteron-deuteron collision at 160 MeV
An experiment, with unpolarized deuteron beam of 160 MeV impinging on liquid deuterium target, was carried out using BINA detector at KVI, in Groningen, the Netherlands. Data were collected for the purpose of obtaining high precision differential cross-section for the deuteron break-up reaction. The elastic scattering data were also collected alongside for the purpose of cross-section normalization. We present here a sample of the un-normalised cross-section for the three-body final state reaction
Three- and four-nucleon dynamics at intermediate energies
An experiment, with unpolarized deuteron beam of 160 MeV impinging on liquid hydrogen and liquid deuterium targets, was carried out using BINA detector at KVI in Groningen, the Netherlands. Data were collected for the purpose of obtaining high precision differential cross sections of break-up channels in dp and dd collisions. The elastic scattering data were also collected alongside for the purpose of cross-section normalization. A brief description of the experiment and the data analysis as well as some preliminary results are presented
Experimental investigation of few-nucleon dynamics at medium energies
An experiment, with unpolarized deuteron beam of 160 MeV impinging on liquid hydrogen and liquid deuterium targets, was carried out using BINA detector at KVI, in Groningen, the Netherlands. Data were collected for the purpose of obtaining high precision differential cross-section for the deuteron break-up reaction. The elastic scattering data were also collected alongside. We present here the methods applied in analysis of data collected in the backward part of the detector
Studies of Deuteron Breakup Reactions in Deuteron–Deuteron Collisions at 160 MeV with BINA
A rich set of differential cross section of the three-body 2H(d,dp)n breakup reaction at 160MeV
deuteron beam energy has been measured over a large range of the available phase space. The experiment
was performed at KVI in Groningen, the Netherlands, using the BINA detector. The cross-section data for
the breakup reaction have been normalized to the simultaneously measured 2H(d,d)2H elastic scattering cross
section. The breakup cross sections obtained for 147 kinematically complete configurations near the quasifree
scattering kinematics are compared to the recent approximate calculations for the three-cluster breakup in
deuteron–deuteron collisions. The cross sections for 294 kinematic configurations of the quasi-free scattering
regime, for which no theoretical calculations exist, are also presented. Besides the three-body breakup, semiinclusive
energy distributions for the four-body 2H(d,pp)nn breakup are reported
Contribution of three nucleon force investigated in deuteron-proton breakup reaction
The elastic scattering and deuteron breakup data were collected in the experiment performed at KVI (Groningen) with use of unpolarized deuteron beam with energy of 80 MeV per nucleon, impinging on hydrogen target. The procedure applied to determine total integrated luminosity is presented. The result will be used for normalization of the differential cross section for the deuteron-proton breakup reaction
Investigation of three nucleon force effects in deuteron-proton breakup reaction
Experimental study of the deuteron-proton breakup process was perfomed in KVI Groningen. In this paper current status of the collected data analysis is presented, including preliminary results of the cross section for the sample kinematical configuration
Spin tune mapping as a novel tool to probe the spin dynamics in storage rings
Precision experiments, such as the search for electric dipole moments of
charged particles using storage rings, demand for an understanding of the spin
dynamics with unprecedented accuracy. The ultimate aim is to measure the
electric dipole moments with a sensitivity up to 15 orders in magnitude better
than the magnetic dipole moment of the stored particles. This formidable task
requires an understanding of the background to the signal of the electric
dipole from rotations of the spins in the spurious magnetic fields of a storage
ring. One of the observables, especially sensitive to the imperfection magnetic
fields in the ring is the angular orientation of stable spin axis. Up to now,
the stable spin axis has never been determined experimentally, and in addition,
the JEDI collaboration for the first time succeeded to quantify the background
signals that stem from false rotations of the magnetic dipole moments in the
horizontal and longitudinal imperfection magnetic fields of the storage ring.
To this end, we developed a new method based on the spin tune response of a
machine to artificially applied longitudinal magnetic fields. This novel
technique, called \textit{spin tune mapping}, emerges as a very powerful tool
to probe the spin dynamics in storage rings. The technique was experimentally
tested in 2014 at the cooler synchrotron COSY, and for the first time, the
angular orientation of the stable spin axis at two different locations in the
ring has been determined to an unprecedented accuracy of better than
rad.Comment: 32 pages, 15 figures, 7 table
Phase Measurement for Driven Spin Oscillations in a Storage Ring
This paper reports the first simultaneous measurement of the horizontal and
vertical components of the polarization vector in a storage ring under the
influence of a radio frequency (rf) solenoid. The experiments were performed at
the Cooler Synchrotron COSY in J\"ulich using a vector polarized, bunched
deuteron beam. Using the new spin feedback system, we
set the initial phase difference between the solenoid field and the precession
of the polarization vector to a predefined value. The feedback system was then
switched off, allowing the phase difference to change over time, and the
solenoid was switched on to rotate the polarization vector. We observed an
oscillation of the vertical polarization component and the phase difference.
The oscillations can be described using an analytical model. The results of
this experiment also apply to other rf devices with horizontal magnetic fields,
such as Wien filters. The precise manipulation of particle spins in storage
rings is a prerequisite for measuring the electric dipole moment (EDM) of
charged particles
Determination of Deuteron Beam Polarizations at COSY
The vector and tensor polarizations of a deuteron beam have been measured
using elastic deuteron-carbon scattering at 75.6 MeV and deuteron-proton
scattering at 270 MeV. After acceleration to 1170 MeV inside the COSY ring, the
polarizations of the deuterons were checked by studying a variety of nuclear
reactions using a cluster target at the ANKE magnet spectrometer placed at an
internal target position of the storage ring. All these measurements were
consistent with the absence of depolarization during acceleration and provide a
number of secondary standards that can be used in subsequent experiments at the
facility.Comment: 12 pages, 13 figure
- …