11 research outputs found

    Calculating singlet excited states: comparison with fast time-resolved infrared spectroscopy of coumarins

    Get PDF
    In contrast to the ground state, the calculation of the infrared (IR) spectroscopy of molecular singlet excited states represents a substantial challenge. Here we use the structural IR fingerprint of the singlet excited states of a range of coumarin dyes to assess the accuracy of density functional theory based methods for the calculation of excited state IR spectroscopy. It is shown that excited state Kohn-Sham density functional theory provides a high level of accuracy and represents an alternative approach to time-dependent density functional theory for simulating the IR spectroscopy of the singlet excited states

    Influence of molecular design on radical spin multiplicity: characterisation of BODIPY dyad and triad radical anions

    Get PDF
    This journal is Š the Owner Societies. A strategy to create organic molecules with high degrees of radical spin multiplicity is reported in which molecular design is correlated with the behaviour of radical anions in a series of BODIPY dyads. Upon reduction of each BODIPY moiety radical anions are formed which are shown to have different spin multiplicities by electron paramagnetic resonance (EPR) spectroscopy and distinct profiles in their cyclic voltammograms and UV-visible spectra. The relationship between structure and multiplicity is demonstrated showing that the balance between singlet, biradical or triplet states in the dyads depends on relative orientation and connectivity of the BODIPY groups. The strategy is applied to the synthesis of a BODIPY triad which adopts an unusual quartet state upon reduction to its radical trianion

    Carbon-Hydrogen Activation of Cycloalkanes by Cyclopentadienylcarbonylrhodium-A Lifetime Enigma

    No full text
    Carbon-hydrogen bond activation reactions of four cycloalkanes (C5H10, C6H12, C7H14, and C8H16) by the Cp'Rh(CO) fragments (Cp' = eta(5)-C5H5 (Cp) or eta(5)-C5Me5 (Cp*)) were modeled theoretically by combining density functional and coupled cluster theories, and their reaction rates were measured by fast time-resolved infrared spectroscopy. The reaction has two steps, starting with the formation of a a-complex intermediate, followed by oxidative addition of the C-H bond by the rhodium. A range of a-complex stabilities among the electronically unique C-H bonds in a cycloalkane were calculated and are related to the individual strengths of the C-H bond's interactions with the Rh fragment and the steric repulsion that is incurred upon forming the specific a-complex. The unexpectedly large increase in the lifetimes of the a-complexes from cyclohexane to cycloheptane was predicted to be due to the large range of stabilities of the different sigma-complexes found for cycloheptane.. The reaction lifetimes were simulated with two mechanisms, with and without migrations among the different complexes, to determine if ring migrations prior to C-H activation were influencing the rate. Both mechanisms predicted similar lifetimes for cyclopentane, cyclohexane, and, to a lesser extent, cycloheptane, suggesting ring migrations do not have a large impact on the rate of C-H activation for these cycloalkanes. For cyclooctane, the inclusion of ring migrations in the reaction mechanism led to a more accurate prediction of the lifetime, indicating that ring migrations did have an effect on the rate of C-H activation for this alkane, and that migration among the a-complexes is faster than the C-H activation for this larger cycloalkane.Supplementary material: [http://cherry.chem.bg.ac.rs/handle/123456789/3685

    Carbon–Hydrogen Activation of Cycloalkanes by CyclopentadienylcarbonylrhodiumA Lifetime Enigma

    No full text
    Carbon–hydrogen bond activation reactions of four cycloalkanes (C<sub>5</sub>H<sub>10</sub>, C<sub>6</sub>H<sub>12</sub>, C<sub>7</sub>H<sub>14</sub>, and C<sub>8</sub>H<sub>16</sub>) by the Cp′Rh­(CO) fragments (Cp′ = η<sup>5</sup>-C<sub>5</sub>H<sub>5</sub> (Cp) or η<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub> (Cp*)) were modeled theoretically by combining density functional and coupled cluster theories, and their reaction rates were measured by fast time-resolved infrared spectroscopy. The reaction has two steps, starting with the formation of a σ-complex intermediate, followed by oxidative addition of the C–H bond by the rhodium. A range of σ-complex stabilities among the electronically unique C–H bonds in a cycloalkane were calculated and are related to the individual strengths of the C–H bond’s interactions with the Rh fragment and the steric repulsion that is incurred upon forming the specific σ-complex. The unexpectedly large increase in the lifetimes of the σ-complexes from cyclohexane to cycloheptane was predicted to be due to the large range of stabilities of the different σ-complexes found for cycloheptane. The reaction lifetimes were simulated with two mechanisms, with and without migrations among the different σ-complexes, to determine if ring migrations prior to C–H activation were influencing the rate. Both mechanisms predicted similar lifetimes for cyclopentane, cyclohexane, and, to a lesser extent, cycloheptane, suggesting ring migrations do not have a large impact on the rate of C–H activation for these cycloalkanes. For cyclooctane, the inclusion of ring migrations in the reaction mechanism led to a more accurate prediction of the lifetime, indicating that ring migrations did have an effect on the rate of C–H activation for this alkane, and that migration among the σ-complexes is faster than the C–H activation for this larger cycloalkane

    Influence of molecular design on radical spin multiplicity: characterisation of BODIPY dyad and triad radical anions

    No full text
    A strategy to create organic molecules with high degrees of radical spin multiplicity is reported in which molecular design is correlated with the behaviour of radical anions in a series of BODIPY dyads. Upon reduction of each BODIPY moiety radical anions are formed which are shown to have different spin multiplicities by electron paramagnetic resonance (EPR) spectroscopy and distinct profiles in their cyclic voltammograms and UV-visible spectra. The relationship between structure and multiplicity is demonstrated showing that the balance between singlet, biradical or triplet states in the dyads depends on relative orientation and connectivity of the BODIPY groups. The strategy is applied to the synthesis of a BODIPY triad which adopts an unusual quartet state upon reduction to its radical trianion
    corecore