4,227 research outputs found

    Individual differences in leech heart motor neuron models

    Get PDF

    ROR2 (receptor tyrosine kinase-like orphan receptor 2)

    Get PDF
    Review on ROR2 (receptor tyrosine kinase-like orphan receptor 2), with data on DNA, on the protein encoded, and where the gene is implicated

    Undifferentiated HepaRG cells show reduced sensitivity to the toxic effects of M8OI through a combination of CYP3A7-mediated oxidation and a reduced reliance on mitochondrial function

    Get PDF
    \ua9 2024 The AuthorsThe methylimidazolium ionic liquid M8OI (1-octyl-3-methylimidazolium chloride, also known as [C8mim]Cl) has been detected in the environment and may represent a hazard trigger for the autoimmune liver disease primary biliary cholangitis, based in part on studies using a rat liver progenitor cell. The effect of M8OI on an equivalent human liver progenitor (undifferentiated HepaRG cells; u-HepaRG) was therefore examined. u-HepaRG cells were less sensitive (>20-fold) to the toxic effects of M8OI. The relative insensitivity of u-HepaRG cells to M8OI was in part, associated with a detoxification by monooxygenation via CYP3A7 followed by further oxidation to a carboxylic acid. Expression of CYP3A7 - in contrast to the related adult hepatic CYP3A4 and CYP3A5 forms - was confirmed in u-HepaRG cells. However, blocking M8OI metabolism with ketoconazole only partly sensitized u-HepaRG cells. Despite similar proliferation rates, u-HepaRG cells consumed around 75% less oxygen than B-13 cells, reflective of reduced dependence on mitochondrial activity (Crabtree effect). Replacing glucose with galactose, resulted in an increase in u-HepaRG cell sensitivity to M8OI, near similar to that seen in B-13 cells. u-HepaRG cells therefore show reduced sensitivity to the toxic effects of M8OI through a combination of metabolic detoxification and their reduced reliance on mitochondrial function

    Ultraluminous Infrared Galaxies

    Full text link
    At luminosities above ~10^{11} L_sun, infrared galaxies become the dominant population of extragalactic objects in the local Universe (z < 0.5), being more numerous than optically selected starburst and Seyfert galaxies, and QSOs at comparable bolometric luminosity. At the highest luminosities, ultraluminous infrared galaxies (ULIGs: L_ir > 10^{12} L_sun), outnumber optically selected QSOs by a factor of ~1.5-2. All of the nearest ULIGs (z < 0.1) appear to be advanced mergers that are powered by both a circumnuclear starburst and AGN, both of which are fueled by an enormous concentration of molecular gas (~10^{10} M_sun) that has been funneled into the merger nucleus. ULIGs may represent a primary stage in the formation of massive black holes and elliptical galaxy cores. The intense circumnuclear starburst that accompanies the ULIG phase may also represent a primary stage in the formation of globular clusters, and the metal enrichment of the intergalactic medium by gas and dust expelled from the nucleus due to the combined forces of supernova explosions and powerful stellar winds.Comment: LaTex, 6 pages with 4 embedded .eps figures. Postscript version plus color plates available at http://www.ifa.hawaii.edu/users/sanders/astroph/s186/plates.html To appear in "Galaxy Interactions at Low and High Redshift" IAU Symposium 186, Kyoto, Japan, eds. J.E. Barnes and D.B. Sander

    Time-dependent response of a zonally averaged ocean–atmosphere–sea ice model to Milankovitch forcing

    Get PDF
    Author Posting. © The Author(s), 2010. This is the author's version of the work. It is posted here by permission of Springer-Verlag for personal use, not for redistribution. The definitive version was published in Climate Dynamics 6 (2010): 763-779, doi:10.1007/s00382-010-0790-6.An ocean-atmosphere-sea ice model is developed to explore the time-dependent response of climate to Milankovitch forcing for the time interval 5-3 Myr BP. The ocean component is a zonally averaged model of the circulation in five basins (Arctic, Atlantic, Indian, Pacific, and Southern Oceans). The atmospheric component is a one-dimensional (latitudinal) energy balance model, and the sea-ice component is a thermodynamic model. Two numerical experiments are conducted. The first experiment does not include sea ice and the Arctic Ocean; the second experiment does. Results from the two experiments are used to investigate (i) the response of annual mean surface air and ocean temperatures to Milankovitch forcing, and (ii) the role of sea ice in this response. In both experiments, the response of air temperature is dominated by obliquity cycles at most latitudes. On the other hand, the response of ocean temperature varies with latitude and depth. Deep water formed between 45°N-65°N in the Atlantic Ocean mainly responds to precession. In contrast, deep water formed south of 60°S responds to obliquity when sea ice is not included. Sea ice acts as a time-integrator of summer insolation changes such that annual mean sea-ice conditions mainly respond to obliquity. Thus, in the presence of sea ice, air temperature changes over the sea ice are amplified, and temperature changes in deep water of southern origin are suppressed since water below sea ice is kept near the freezing point.This work was supported by an NSERC Discovery Grant awarded to L.A.M. We also thank GEC3 for a Network Grant

    Structure-Based Design of Potent and Selective Leishmania N-Myristoyltransferase Inhibitors

    Get PDF
    Inhibitors of Leishmania N-myristoyltransferase (NMT), a potential target for the treatment of leishmaniasis, obtained from a high-throughput screen, were resynthesized to validate activity. Crystal structures bound to Leishmania major NMT were obtained, and the active diastereoisomer of one of the inhibitors was identified. On the basis of structural insights, enzyme inhibition was increased 40-fold through hybridization of two distinct binding modes, resulting in novel, highly potent Leishmania donovani NMT inhibitors with good selectivity over the human enzyme

    Infant cortex responds to other humans from shortly after birth

    Get PDF
    A significant feature of the adult human brain is its ability to selectively process information about conspecifics. Much debate has centred on whether this specialization is primarily a result of phylogenetic adaptation, or whether the brain acquires expertise in processing social stimuli as a result of its being born into an intensely social environment. Here we study the haemodynamic response in cortical areas of newborns (1–5 days old) while they passively viewed dynamic human or mechanical action videos. We observed activation selective to a dynamic face stimulus over bilateral posterior temporal cortex, but no activation in response to a moving human arm. This selective activation to the social stimulus correlated with age in hours over the first few days post partum. Thus, even very limited experience of face-to-face interaction with other humans may be sufficient to elicit social stimulus activation of relevant cortical regions

    Justice at Sea: Fishers’ politics and marine conservation in coastal Odisha, India

    Get PDF
    This is a paper about the politics of fishing rights in and around the Gahirmatha marine sanctuary in coastal Odisha, in eastern India. Claims to the resources of this sanctuary are politicised through the creation of a particularly damaging narrative by influential Odiya environmental actors about Bengalis, as illegal immigrants who have hurt the ecosystem through their fishing practices. Anchored within a theoretical framework of justice as recognition, the paper considers the making of a regional Odiya environmentalism that is, potentially, deeply exclusionary. It details how an argument about ‘illegal Bengalis’ depriving ‘indigenous Odiyas’ of their legitimate ‘traditional fishing rights’ derives from particular notions of indigeneity and territory. But the paper also shows that such environmentalism is tenuous, and fits uneasily with the everyday social landscape of fishing in coastal Odisha. It concludes that a wider class conflict between small fishers and the state over a sanctuary sets the context in which questions about legitimate resource rights are raised, sometimes with important effects, like when out at sea

    The effects of supernovae on the dynamical evolution of binary stars and star clusters

    Full text link
    In this chapter I review the effects of supernovae explosions on the dynamical evolution of (1) binary stars and (2) star clusters. (1) Supernovae in binaries can drastically alter the orbit of the system, sometimes disrupting it entirely, and are thought to be partially responsible for `runaway' massive stars - stars in the Galaxy with large peculiar velocities. The ejection of the lower-mass secondary component of a binary occurs often in the event of the more massive primary star exploding as a supernova. The orbital properties of binaries that contain massive stars mean that the observed velocities of runaway stars (10s - 100s km s−1^{-1}) are consistent with this scenario. (2) Star formation is an inherently inefficient process, and much of the potential in young star clusters remains in the form of gas. Supernovae can in principle expel this gas, which would drastically alter the dynamics of the cluster by unbinding the stars from the potential. However, recent numerical simulations, and observational evidence that gas-free clusters are observed to be bound, suggest that the effects of supernova explosions on the dynamics of star clusters are likely to be minimal.Comment: 16 pages, to appear in the 'Handbook of Supernovae', eds. Paul Murdin and Athem Alsabti. This version replaces an earlier version that contained several typo
    • 

    corecore