40,580 research outputs found
Genetic Variation in Resistance of Scotch Pine to Zimmerman Pine Moth
(excerpt)
Scotch pine (Pinus sylvestris L.), a forest tree introduced from Eurasia, is commonly planted for Christmas tree and timber use in northeastern United States. In this country it has numerous insect enemies. Among the most important are European pine shoot moth, Rhyacionia buoliana (Schiffermiieller); pine root collar weevil, Hylobius radicis Buchanan;,European pine sawfly, Neodiprion sertifer (Geoffroy); and eastern white-pine shoot borer, Eucosma gloriola Heinrich. Previous studies (Wright et al., 1967; Wright and Wilson, 1972; Steiner, 1974) have revealed large genetic differences in resistance to some of these pests.
Another destructive pest is the Zimmerman pine moth, Dioryctria zimmermani (Grote). In 1968 this insect, native to the United States, was found attacking trees in a Scotch pine provenance test in southwestern Michigan. The attack rate was heavy and by 1973 it was obvious that some rams or varieties were attacked more heavily than others. This is a report on those differences
The Panther Mountain circular structure, a possible buried meteorite crater
Panther Mountain, located near Phoenicia, New York, is part of the Catskill Mountains, which form the eastern end of the Allegheny Plateau in New York. It is a circular mass defined physiographically by an anomalous circular drainage pattern produced by Esopus Creek and its tributary Woodland Creek. The circular valley that rings the mountain is fracture-controlled; where bedrock is exposed, it shows a joint density 5 to 10 times greater than that on either side of the valley. Where obscured by alluvial valley fill, the bedrock's low seismic velocity suggests that this anomalous fracturing is continuous in the bedrock underlying the rim valley. North-south and east-west gravity and magnetic profiles were made across the structure. Terrane-corrected, residual gravity profiles show an 18-mgal negative anomaly, and very steep gradients indicate a near-surface source. Several possible explanations of the gravity data were modeled. We conclude that the Panther Mountain circular structure is probably a buried meteorite crater that formed contemporaneously with marine or fluvial sedimentation during Silurian or Devonian time. An examination of drill core and cuttings in the region is underway to search for ejecta deposits and possible seismic and tsunami effects in the sedimentary section. Success would result in both dating the impact and furnishing a chronostratigraphic marker horizon
Postcard: Castle Kimble, Manhattan, Kansas
This colorized photographic postcard features a castle located in Manhattan Kansas. It is a two story limestone structure with three turrets on the third story. Two American flags are on top. The building is surrounded by a manicured lawn and trees. Red print is at the top of the card. Printed text and handwriting is on the back of the card.https://scholars.fhsu.edu/tj_postcards/1628/thumbnail.jp
Recommended from our members
Effective Temperature Of Uranus
NASA NGR 09-015-047, NGR 22-007-270, NGR 44-012-152Astronom
VLA Detection of the Ionized Stellar Winds Arising from Massive Stars in the Galactic Center Arches Cluster
The Galactic center Arches stellar cluster, detected and studied until now
only in the near-infrared, is comprised of at least one hundred massive (M>20
Msun) stars. Here we report the detection at centimeter wavelengths of radio
continuum emission from eight radio sources associated with the cluster. Seven
of these radio sources have rising spectral indices between 4.9 and 8.5 GHz and
coincide spatially with the brightest stars in the cluster, as determine from
JHK photometry and Brackett alpha and Brackett Gamma spectroscopy. Our results
confirm the presence of powerful ionized winds in these stars. The eighth radio
source has a nonthermal spectrum and its nature is yet unclear, but it could be
associated with a lower mass young star in the cluster.Comment: 6 pages, 2 embedded figures, accepted to ApJLetter
A preliminary study of factors affecting the calibration stability of the iridium versus iridium-40 percent rhodium thermocouple
An iridium versus iridium-40% rhodium thermocouple was studied. Problems associated with the use of this thermocouple for high temperature applications (up to 2000 C) were investigated. The metallurgical studies included X-ray, macroscopic, resistance, and metallographic studies. The thermocouples in the as-received condition from the manufacturer revealed large amounts of internal stress caused by cold working during manufacturing. The thermocouples also contained a large amount of inhomogeneities and segregations. No phase transformations were observed in the alloy up to 1100 C. It was found that annealing the thermocouple at 1800 C for two hours, and then at 1400 C for 2 to 3 hours yielded a fine grain structure, relieving some of the strains, and making the wire more ductile. It was also found that the above annealing procedure stabilized the thermal emf behavior of the thermocouple for application below 1800 C (an improvement from + or - 1% to + or - 0.02% within the range of the test parameters used)
Symmetry based determination of space-time functions in nonequilibrium growth processes
We study the space-time correlation and response functions in nonequilibrium
growth processes described by linear stochastic Langevin equations. Exploiting
exclusively the existence of space and time dependent symmetries of the
noiseless part of these equations, we derive expressions for the universal
scaling functions of two-time quantities which are found to agree with the
exact expressions obtained from the stochastic equations of motion. The
usefulness of the space-time functions is illustrated through the investigation
of two atomistic growth models, the Family model and the restricted Family
model, which are shown to belong to a unique universality class in 1+1 and in
2+1 space dimensions. This corrects earlier studies which claimed that in 2+1
dimensions the two models belong to different universality classes.Comment: 18 pages, three figures included, submitted to Phys. Rev.
Field-calibrated model of melt, refreezing, and runoff for polar ice caps : Application to Devon Ice Cap
Acknowledgments R.M.M. was supported by the Scottish Alliance for Geoscience, Environment and Society (SAGES). The field data collection contributed to the validation of the European Space Agency Cryosat mission and was supported by the Natural Sciences and Engineering Research Council, Canada, the Meteorological Service of Canada (CRYSYS program), the Polar Continental Shelf Project (an agency of Natural Resources Canada), and by UK Natural Environment Research Council consortium grant NER/O/S/2003/00620. Support for D.O.B. was provided by the Canadian Circumpolar Institute and the Climate Change Geoscience Program, Earth Sciences Sector, Natural Resources Canada (ESS contribution 20130371). Thanks are also due to the Nunavut Research Institute and the communities of Resolute Bay and Grise Fjord for permission to conduct fieldwork on Devon Ice Cap. M.J. Sharp, A. Gardner, F. Cawkwell, R. Bingham, S. Williamson, L. Colgan, J. Davis, B. Danielson, J. Sekerka, L. Gray, and J. Zheng are thanked for logistical support and field assistance during the data collection. We thank Ruzica Dadic, two other anonymous reviewers, and the Editor, Bryn Hubbard, for their helpful comments on an earlier version of this paper and which resulted in significant improvements.Peer reviewedPublisher PD
- …