We study the space-time correlation and response functions in nonequilibrium
growth processes described by linear stochastic Langevin equations. Exploiting
exclusively the existence of space and time dependent symmetries of the
noiseless part of these equations, we derive expressions for the universal
scaling functions of two-time quantities which are found to agree with the
exact expressions obtained from the stochastic equations of motion. The
usefulness of the space-time functions is illustrated through the investigation
of two atomistic growth models, the Family model and the restricted Family
model, which are shown to belong to a unique universality class in 1+1 and in
2+1 space dimensions. This corrects earlier studies which claimed that in 2+1
dimensions the two models belong to different universality classes.Comment: 18 pages, three figures included, submitted to Phys. Rev.