10 research outputs found

    A potential cyanobacterial ancestor of Viridiplantae chloroplasts

    Get PDF
    The theory envisaging the origin of plastids from endosymbiotic cyanobacteria is well-established but it is difficult to explain the evolution (spread) of plastids in phylogenetically diverse plant groups. It is widely believed that primordial endosymbiosis occurred in the last common ancestor of all algae^1^, which then diverged into the three primary photosynthetic eukaryotic lineages, viz. the Rhodophyta (red algae), Glaucocystophyta (cyanelle-containing algae) and Viridiplantae (green algae plus all land plants)^2^. Members of these three groups invariably have double membrane-bound plastids^3^, a property that endorses the primary endosymbiotic origin of the organelles. On the other hand, the three or four membrane-bound plastids of the evolutionary complicated Chromalveolates [chromista (cryptophytes, haptophytes, and stramenopiles) and alveolata (dinoflagellates, apicomplexans, and ciliates)] are inexplicable in the light of a single endosymbiosis event, thereby necessitating the postulation of the secondary^4,5^ and tertiary^6^ endosymbiosis theories where a nonphotosynthetic protist supposedly engulfed a red or a green alga^7^ and an alga containing a secondary plastid itself was engulfed^8^ respectively. In the current state of understanding, however, there is no clue about the taxonomic identity of the cyanobacterial ancestor of chloroplasts, even though there is a wide consensus on a single primordial endosymbiosis event. During our metagenomic investigation of a photosynthetic geothermal microbial mat community we discovered a novel order-level lineage of Cyanobacteria that - in 16S rRNA gene sequence-based phylogeny - forms a robust monophyletic clade with chloroplast-derived sequences from diverse divisions of Viridiplantae. This cluster diverged deeply from the other major clade encompassing all hitherto known groups of Cyanobacteria plus the chloroplasts of Rhodophyta, Glaucocystophyceae and Chromalveolates. Since this fundamental dichotomy preceded the origin of all chloroplasts, it appears that two early-diverging cyanobacterial lineages had possibly given rise to two discrete chloroplast descents via two separate engulfment events

    Trends of mutation accumulation across global SARS-CoV-2 genomes: Implications for the evolution of the novel coronavirus

    Get PDF
    To understand SARS-CoV-2 microevolution, this study explored the genome-wide frequency, gene-wise distribution, and molecular nature of all point-mutations detected across its 71,703 RNA-genomes deposited in GISAID till 21 August 2020. Globally, nsp1/nsp2 and orf7a/orf3a were the most mutation-ridden non-structural and structural genes respectively. Phylogeny of 4618 spatiotemporally-representative genomes revealed that entities belonging to the early lineages are mostly spread over Asian countries, including India, whereas the recently-derived lineages are more globally distributed. Of the total 20,163 instances of polymorphism detected across global genomes, 12,594 and 7569 involved transitions and transversions, predominated by cytidine-to-uridine and guanosine-to-uridine conversions, respectively. Positive selection of nonsynonymous mutations (dN/dS >1) in most of the structural, but not the non-structural, genes indicated that SARS-CoV-2 has already harmonized its replication/transcription machineries with the host metabolism, while it is still redefining virulence/transmissibility strategies at the molecular level. Mechanistic bases and evolutionary/pathogenicity-related implications are discussed for the predominant mutation-types

    Conjugative Type 4 Secretion System of a Novel Large Plasmid from the Chemoautotroph Tetrathiobacter kashmirensis and Construction of Shuttle Vectors for Alcaligenaceae▿ †

    No full text
    Tetrathiobacter spp. and other members of the Alcaligenaceae are metabolically versatile and environmentally significant. A novel, ∼60-kb conjugative plasmid, pBTK445, from the sulfur chemolithoautotroph Tetrathiobacter kashmirensis, was identified and characterized. This plasmid exists at a low copy number of 2 to 3 per host chromosome. The portion of pBTK445 sequenced so far (∼25 kb) harbors genes putatively involved in replication, transfer functions, partition, and UV damage repair. A 1,373-bp region was identified as the minimal replicon. This region contains a repA gene encoding a protein belonging to the RPA (replication protein A) superfamily and an upstream, iteron-based oriV. A contiguous 11-gene cluster homologous to various type 4 secretion systems (T4SSs) was identified. Insertional inactivation demonstrated that this cluster is involved in the conjugative transfer functions of pBTK445, and thus, it was named the tagB (transfer-associated gene homologous to virB) locus. The core and peripheral TagB components show different phylogenetic affinities, suggesting that this system has evolved by assembling components from evolutionarily divergent T4SSs. A virD4 homolog, putatively involved in nucleoprotein transfer, is also present downstream of the tagB locus. Although pBTK445 resembles IncP plasmids in terms of its genomic organization and the presence of an IncP-specific trbM homolog, it also shows several unique features. Unlike that of IncP, the oriT of pBTK445 is located in close proximity to the oriV, and a traL homolog, which is generally present in the TraI locus of IncP, is present in pBTK445 in isolation, upstream of the tagB locus. A significant outcome of this study is the construction of conjugative shuttle vectors for Tetrathiobacter and related members of the Alkaligenaceae

    Genome implosion elicits host-confinement in Alcaligenaceae: evidence from the comparative genomics of Tetrathiobacter kashmirensis, a pathogen in the making.

    Get PDF
    This study elucidates the genomic basis of the evolution of pathogens alongside free-living organisms within the family Alcaligenaceae of Betaproteobacteria. Towards that end, the complete genome sequence of the sulfur-chemolithoautotroph Tetrathiobacter kashmirensis WT001(T) was determined and compared with the soil isolate Achromobacter xylosoxidans A8 and the two pathogens Bordetella bronchiseptica RB50 and Taylorella equigenitalis MCE9. All analyses comprehensively indicated that the RB50 and MCE9 genomes were almost the subsets of A8 and WT001(T), respectively. In the immediate evolutionary past Achromobacter and Bordetella shared a common ancestor, which was distinct from the other contemporary stock that gave rise to Tetrathiobacter and Taylorella. The Achromobacter-Bordetella precursor, after diverging from the family ancestor, evolved through extensive genome inflation, subsequent to which the two genera separated via differential gene losses and acquisitions. Tetrathiobacter, meanwhile, retained the core characteristics of the family ancestor, and Taylorella underwent massive genome degeneration to reach an evolutionary dead-end. Interestingly, the WT001(T) genome, despite its conserved architecture, had only 85% coding density, besides which 578 out of its 4452 protein-coding sequences were found to be pseudogenized. Translational impairment of several DNA repair-recombination genes in the first place seemed to have ushered the rampant and indiscriminate frame-shift mutations across the WT001(T) genome. Presumably, this strain has just come out of a recent evolutionary bottleneck, representing a unique transition state where genome self-degeneration has started comprehensively but selective host-confinement has not yet set in. In the light of this evolutionary link, host-adaptation of Taylorella clearly appears to be the aftereffect of genome implosion in another member of the same bottleneck. Remarkably again, potent virulence factors were found widespread in Alcaligenaceae, corroborating which hemolytic and mammalian cell-adhering abilities were discovered in WT001(T). So, while WT001(T) relatives/derivatives in nature could be going the Taylorella way, the lineage as such was well-prepared for imminent host-confinement

    NaCl-Saturated Brines Are Thermodynamically Moderate, Rather Than Extreme, Microbial Habitats

    No full text
    NaCl-saturated brines such as saltern crystalliser ponds, inland salt lakes, deep-sea brines and liquids-of-deliquescence on halite are commonly regarded as a paradigm for the limit of life on Earth. There are, however, other habitats that are thermodynamically more extreme. Typically, NaCl-saturated environments contain all domains of life and perform complete biogeochemical cycling. Despite their reduced water activity, ∼0.755 at 5 M NaCl, some halophiles belonging to the Archaea and Bacteria exhibit optimum growth/metabolism in these brines. Furthermore, the recognised water-activity limit for microbial function, ~0.585 for some strains of fungi, lies far below 0.755. Other biophysical constraints on the microbial biosphere (temperatures of \u3e 121°C; pH \u3e 12; and high chaotropicity; e.g. ethanol at \u3e 18.9% w/v (24% v/v) and MgCl2 at \u3e 3.03 M) can prevent any cellular metabolism or ecosystem function. By contrast, NaCl-saturated environments contain biomass-dense, metabolically diverse, highly active and complex microbial ecosystems; and this underscores their moderate character. Here, we survey the evidence that NaCl-saturated brines are biologically permissive, fertile habitats that are thermodynamically mid-range rather than extreme. Indeed, were NaCl sufficiently soluble, some halophiles might grow at concentrations of up to 8 M. It may be that the finite solubility of NaCl has stabilised the genetic composition of halophile populations and limited the action of natural selection in driving halophile evolution towards greater xerophilicity. Further implications are considered for the origin(s) of life and other aspects of astrobiology
    corecore