710 research outputs found

    An optimization study to minimize surface distortions of a hoop-column antenna

    Get PDF
    An automated procedure to lessen the tedium of manual approach currently used to minimize surface distortions in a hoop/column antenna is studied. Three fundamental elements are used for the study: (1) The finite element analysis program is used to calculate the antenna surface distortions due to externally applied loads; (2) a general purpose optimization program is used to determine the set of control cable tensions which minimize the antenna surface distortions; and (3) another program is used to calculate the best fit parabola passing through a distorted antenna shape and to calculate the RMS distortion error. The interim results of this feasibility study are given

    Multidisciplinary optimization applied to a transport aircraft

    Get PDF
    Decomposition of a large optimization problem into several smaller subproblems has been proposed as an approach to making large-scale optimization problems tractable. To date, the characteristics of this approach have been tested on problems of limited complexity. The objective of the effort is to demonstrate the application of this multilevel optimization method on a large-scale design study using analytical models comparable to those currently being used in the aircraft industry. The purpose of the design study which is underway to provide this demonstration is to generate a wing design for a transport aircraft which will perform a specified mission with minimum block fuel. A definition of the problem; a discussion of the multilevel composition which is used for an aircraft wing; descriptions of analysis and optimization procedures used at each level; and numerical results obtained to date are included. Computational times required to perform various steps in the process are also given. Finally, a summary of the current status and plans for continuation of this development effort are given

    Multilevel decomposition approach to the preliminary sizing of a transport aircraft wing

    Get PDF
    A multilevel/multidisciplinary optimization scheme for sizing an aircraft wing structure is described. A methodology using nonlinear programming in application to a very large engineering problem is presented. This capability is due to the decomposition approach. Over 1300 design variables are considered for this nonlinear optimization task. In addition, a mathematical link is established coupling the detail of structural sizing to the overall system performance objective, such as fuel consumption. The scheme is implemented as a three level system analyzing aircraft mission performance at the top level, the total aircraft structure as the middle level, and individual stiffened wing skin cover panels at the bottom level. Numerical show effectiveness of the method and its good convergence characteristics

    A new algorithm for general multiobjective optimization

    Get PDF
    Described is a new technique for converting a constrained optimization problem to an unconstrained one, and a new method for multiobjective optimization based on that technique. The technique transforms the objective functions into goal constraints. The goal constraints are appended to the set of behavior constraints and the envelope of all functions in the set is searched for an unconstrained minimum. The technique may be categorized as a SUMT algorithm. In multiobjective applications, the approach has the advantage of locating a compromise minimum without the need to optimize for each individual objective function separately. The constrained to unconstrained conversion is described, followed by a description of the multiobjective problem. Two example problems are presented to demonstrate the robustness of the method

    An indirect method for numerical optimization using the Kreisselmeir-Steinhauser function

    Get PDF
    A technique is described for converting a constrained optimization problem into an unconstrained problem. The technique transforms one of more objective functions into reduced objective functions, which are analogous to goal constraints used in the goal programming method. These reduced objective functions are appended to the set of constraints and an envelope of the entire function set is computed using the Kreisselmeir-Steinhauser function. This envelope function is then searched for an unconstrained minimum. The technique may be categorized as a SUMT algorithm. Advantages of this approach are the use of unconstrained optimization methods to find a constrained minimum without the draw down factor typical of penalty function methods, and that the technique may be started from the feasible or infeasible design space. In multiobjective applications, the approach has the advantage of locating a compromise minimum design without the need to optimize for each individual objective function separately

    Integrating aerodynamics and structures in the minimum weight design of a supersonic transport wing

    Get PDF
    An approach is presented for determining the minimum weight design of aircraft wing models which takes into consideration aerodynamics-structure coupling when calculating both zeroth order information needed for analysis and first order information needed for optimization. When performing sensitivity analysis, coupling is accounted for by using a generalized sensitivity formulation. The results presented show that the aeroelastic effects are calculated properly and noticeably reduce constraint approximation errors. However, for the particular example selected, the error introduced by ignoring aeroelastic effects are not sufficient to significantly affect the convergence of the optimization process. Trade studies are reported that consider different structural materials, internal spar layouts, and panel buckling lengths. For the formulation, model and materials used in this study, an advanced aluminum material produced the lightest design while satisfying the problem constraints. Also, shorter panel buckling lengths resulted in lower weights by permitting smaller panel thicknesses and generally, by unloading the wing skins and loading the spar caps. Finally, straight spars required slightly lower wing weights than angled spars

    The Medicalization of Nonhuman Animal Rights: Frame Contestation and the Exploitation of Disability

    Get PDF
    Nonhuman Animal rights activists are sometimes dismissed as ‘crazy’ or irrational by countermovements seeking to protect status quo social structures. Social movements themselves often utilize disability narratives in their claims-making as well. In this article, we argue that Nonhuman Animal exploitation and Nonhuman Animal rights activism are sometimes medicalized in frame disputes. The contestation over mental ability ultimately exploits humans with disabilities. The medicalization of Nonhuman Animal rights activism diminishes activists’ social justice claims, but the movement’s medicalization of Nonhuman Animal use unfairly otherizes its target population and treats disability identity as a pejorative. Utilizing a content analysis of major newspapers and anti-speciesist activist blogs published between 2009 and 2013, it is argued that disability has been incorporated into the tactical repertoires of the Nonhuman Animal rights movement and countermovements, becoming a site of frame contestation. The findings could have implications for a number of other social movements that also negatively utilize disability narratives

    A solar cycle of spacecraft anomalies due to internal charging

    No full text
    International audienceIt is important to appreciate how the morphology of internal charging of spacecraft systems, due to penetrating electrons, differs from that of the more common surface charging, due to electrons with lower energy. A specific and recurrent anomaly on a geostationary communication satellite has been tracked for ten years so that solar cycle and seasonal dependencies can be clearly established. Concurrent measurements of sunspot number, solar wind speed and 2-day >2 MeV electron fluence are presented to highlight pertinent space weather relationships, and the importance of understanding the complex particle interaction processes involved

    Application of multidisciplinary optimization methods to the design of a supersonic transport

    Get PDF
    An optimization design method is discussed. This method is based on integrating existing disciplinary analysis and sensitivity analysis techniques by means of generalized sensitivity equations. A generic design system implementing this method is described. The system is being used to design the configuration and internal structure of a supersonic transport wing for optimum performance. This problem combines the disciplines of linear aerodynamics, structures, and performance. Initial results which include the disciplines of aerodynamics and structures in a conventional minimum weight design under static aeroelastic constraints are presented
    • …
    corecore