11 research outputs found

    Functional testosterone receptors in plasma membranes of T cells

    No full text
    T cells are considered to be unresponsive to testosterone due to the absence of androgen receptors (AR). Here, we demonstrate the testosterone responsiveness of murine splenic T cells in vitro as well as the presence of unconventional cell surface receptors for testosterone and classical intracellular AR. Binding sites for testosterone on the surface of both CD4(+) and CD8(+) subsets of T cells are directly revealed with the impeded ligand testosterone-BSA-FITC by confocal laser scanning microscopy (CLSM) and flow cytometry, respectively. Binding of the plasma membrane impermeable testosterone-BSA conjugate induces a rapid rise (<5 s) in [Ca2+]i of Fura-2-loaded T cells. This rise reflects influx of extracellular Ca2+ through non-voltage-gated and Ni2+-blockable Ca2+ channels of the plasma membrane. The testosterone-BSA-induced Ca2+ import is not affected by cyproterone, a blocker of the AR. In addition, AR are not detectable on the surface of intact T cells when using anti-AR antibodies directed against the amino and carboxy terminus of the AR, although T cells contain AR, as revealed by reverse transcription-polymerase chain reactions and Western blotting. AR can be visualized with the anti-AR antibodies in the cytoplasm of permeabilized T cells by using CLSM, though AR are not detectable in cytosol fractions when using the charcoal binding assay with 3H-R1881 as ligand. Cytoplasmic AR do not translocate to the nucleus of T cells in the presence of testosterone, in contrast to cytoplasmic AR in human cancer LNCaP cells. These findings suggest that the classical AR present in splenic T cells are not active in the genomic pathway. By contrast, the cell surface receptors for testosterone are in a functionally active state, enabling T cells a nongenomic response to testosterone

    Testosterone signaling in T cells and macrophages

    No full text
    This review summarizes data about non-genomic actions of testosterone on murine malaria, T cells and macrophages produced by our group during the last 15 years. In C578L/10 mice, testosterone induces a lethal outcome of blood stage infections with Plasmodium chabaudi which normally takes a self-healing course controlled by genes of the H-2 complex and the non-H-2 background. This suppressive effect of testosterone is mediated neither via the classic intracellular androgen receptor (AR) response nor, after conversion of testosterone to estradiol, via the estrogen receptor. Testosterone acts non-genomically, i.e. through surface receptors, on murine T cells and macrophages, which becomes evident as a rapid rise in the intracellular free Ca₂₊ concentration ([Ca₂₊]i). In T cells, this rise reflects predominantly influx of extracellular Ca₂₊, while it is predominantly due to release of Ca₂₊ from intracellular Ca₂₊-stores in macrophages. The testosterone- induced rise in [Ca₂₊]i) of both macrophages and T cells is not inhibited by the AR-blocker cyproterone, and it is also inducible by the plasma membrane impermeable ligand testosterone-BSA. The surface receptors initiate a transcription-independent signaling pathway of testosterone. Currently, we are trying to isolate testosterone surface receptors and to investigate a possible cross-talk of non-genomic testosterone signaling with other genotropic signaling pathways
    corecore