89 research outputs found

    The Effects of Adolescent Heavy Drinking on the Timing and Stability of Cohabitation and Marriage

    Get PDF
    Based on prospective British Cohort Study data, adolescent alcohol use predicted the timing and stability of committed partnerships between 16 and 34 years (n = 3278; 59% female). Propensity score methods balanced age 16 heavy drinkers (32.4%) and nonheavy drinkers on a range of relevant risk factors assessed in infancy and childhood. Adolescent heavy drinking predicted having ever cohabited, earlier transitions into cohabiting and marital relationships, more breakups, and an increased likelihood of divorce. Gender and social class moderated these relationships; heavy-drinking working-class males were especially likely to cohabit and to experience early entry into cohabitation and marriage. Implications for practitioners focus on the benefits of reducing adolescent heavy drinking and precocious transitions to committed partnerships

    Common SNPs explain some of the variation in the personality dimensions of neuroticism and extraversion

    Get PDF
    The personality traits of neuroticism and extraversion are predictive of a number of social and behavioural outcomes and psychiatric disorders. Twin and family studies have reported moderate heritability estimates for both traits. Few associations have been reported between genetic variants and neuroticism/extraversion, but hardly any have been replicated. Moreover, the ones that have been replicated explain only a small proportion of the heritability (<∼2%). Using genome-wide single-nucleotide polymorphism (SNP) data from ∼12 000 unrelated individuals we estimated the proportion of phenotypic variance explained by variants in linkage disequilibrium with common SNPs as 0.06 (s.e.=0.03) for neuroticism and 0.12 (s.e.=0.03) for extraversion. In an additional series of analyses in a family-based sample, we show that while for both traits ∼45% of the phenotypic variance can be explained by pedigree data (that is, expected genetic similarity) one third of this can be explained by SNP data (that is, realized genetic similarity). A part of the so-called ‘missing heritability' has now been accounted for, but some of the reported heritability is still unexplained. Possible explanations for the remaining missing heritability are that: (i) rare variants that are not captured by common SNPs on current genotype platforms make a major contribution; and/ or (ii) the estimates of narrow sense heritability from twin and family studies are biased upwards, for example, by not properly accounting for nonadditive genetic factors and/or (common) environmental factors

    Body mass index and height over three generations: evidence from the Lifeways cross-generational cohort study

    Get PDF
    Background: Obesity and its measure of body mass index are strongly determined by parental body size. Debate continues as to whether both parents contribute equally to offspring body mass which is key to understanding the aetiology of the disease. The aim of this study was to use cohort data from three generations of one family to examine the relative maternal and paternal associations with offspring body mass index and how these associations compare with family height to demonstrate evidence of genetic or environmental cross-generational transmission. Methods: 669 of 1082 families were followed up in 2007/8 as part of the Lifeways study, a prospective observational cross-generation linkage cohort. Height and weight were measured in 529 Irish children aged 5 to 7 years and were self-reported by parents and grandparents. All adults provided information on self-rated health, education status, and indicators of income, diet and physical activity. Associations between the weight, height, and body mass index of family members were examined with mixed models and heritability estimates computed using linear regression analysis. Results: Self-rated health was associated with lower BMI for all family members, as was age for children. When these effects were accounted for evidence of familial associations of BMI from one generation to the next was more apparent in the maternal line. Heritability estimates were higher (h2 = 0.40) for mother-offspring pairs compared to father-offspring pairs (h2 = 0.22). In the previous generation, estimates were higher between mothersparents (h2 = 0.54-0.60) but not between fathers-parents (h2 = -0.04-0.17). Correlations between mother and offspring across two generations remained significant when modelled with fixed variables of socioeconomic status, health, and lifestyle. A similar analysis of height showed strong familial associations from maternal and paternal lines across each generation. Conclusions: This is the first family cohort study to report an enduring association between mother and offspring BMI over three generations. The evidence of BMI transmission over three generations through the maternal line in an observational study corroborates the findings of animal studies. A more detailed analysis of geno and phenotypic data over three generations is warranted to understand the nature of this maternal-offspring relationship.TS 24.4.1

    The neighbourhood social environment and alcohol use among urban and rural Scottish adolescents

    Get PDF
    Funding for the Scottish Health Behaviour in School-aged Children was provided by NHS Scotland. This work was also supported by the 600th Anniversary Ph.D. Scholarship which was awarded to Gina Martin by the University of St Andrews.Objectives This research examined the relationship between neighbourhood social environmental characteristics and drinking outcomes among a sample of urban and rural adolescents. Methods From a sample of 1558 Scottish secondary schoolchildren, surveyed as part of the 2010 Health Behaviour in School-aged Children study, we modelled three drinking outcomes on a variety of neighbourhood conditions, including social cohesion, disorder, alcohol outlet density, deprivation, and urban/rurality. Nested and cross-classified multilevel logistic regressions were specified. Results An urban-to-rural gradient was found with non-urban adolescents exhibiting higher odds of having ever drank. Neighbourhood social cohesion related to having ever drank. Among drinkers, those living in accessible small towns had higher odds of weekly drinking and drunkenness compared to urban areas. Higher odds of drunkenness were also found in remote rural areas. Those residing in the least deprived areas had lower odds of weekly drinking. Conclusions In Scotland, inequalities exist in adolescent alcohol use by urban/rurality and neighbourhood social conditions. Findings support regional targeting of public health efforts to address inequalities. Future work is needed to develop and evaluate intervention and prevention approaches for neighbourhoods at risk.Publisher PDFPeer reviewe

    Risk factors for methamphetamine use in youth: a systematic review

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Methamphetamine (MA) is a potent stimulant that is readily available. Its effects are similar to cocaine, but the drug has a profile associated with increased acute and chronic toxicities. The objective of this systematic review was to identify and synthesize literature on risk factors that are associated with MA use among youth.</p> <p>More than 40 electronic databases, websites, and key journals/meeting abstracts were searched. We included studies that compared children and adolescents (≤ 18 years) who used MA to those who did not. One reviewer extracted the data and a second checked for completeness and accuracy. For discrete risk factors, odds ratios (OR) were calculated and when appropriate, a pooled OR with 95% confidence intervals (95% CI) was calculated. For continuous risk factors, mean difference and 95% CI were calculated and when appropriate, a weighted mean difference (WMD) and 95% CI was calculated. Results were presented separately by comparison group: low-risk (no previous drug abuse) and high-risk children (reported previous drug abuse or were recruited from a juvenile detention center).</p> <p>Results</p> <p>Twelve studies were included. Among low-risk youth, factors associated with MA use were: history of heroin/opiate use (OR = 29.3; 95% CI: 9.8–87.8), family history of drug use (OR = 4.7; 95% CI: 2.8–7.9), risky sexual behavior (OR = 2.79; 95% CI: 2.25, 3.46) and some psychiatric disorders. History of alcohol use and smoking were also significantly associated with MA use. Among high-risk youth, factors associated with MA use were: family history of crime (OR = 2.0; 95% CI: 1.2–3.3), family history of drug use (OR = 4.7; 95% CI: 2.8–7.9), family history of alcohol abuse (OR = 3.2; 95% CI: 1.8–5.6), and psychiatric treatment (OR = 6.8; 95% CI: 3.6–12.9). Female sex was also significantly associated with MA use.</p> <p>Conclusion</p> <p>Among low-risk youth, a history of engaging in a variety of risky behaviors was significantly associated with MA use. A history of a psychiatric disorder was a risk factor for MA for both low- and high-risk youth. Family environment was also associated with MA use. Many of the included studies were cross-sectional making it difficult to assess causation. Future research should utilize prospective study designs so that temporal relationships between risk factors and MA use can be established.</p

    Corrigendum to Genome-wide analysis of over 106 000 individuals identifies 9 neuroticism-associated loci

    Get PDF
    Neuroticism is a personality trait of fundamental importance for psychological well-being and public health. It is strongly associated with major depressive disorder (MDD) and several other psychiatric conditions. Although neuroticism is heritable, attempts to identify the alleles involved in previous studies have been limited by relatively small sample sizes. Here we report a combined meta-analysis of genome-wide association study (GWAS) of neuroticism that includes 91 370 participants from the UK Biobank cohort, 6659 participants from the Generation Scotland: Scottish Family Health Study (GS:SFHS) and 8687 participants from a QIMR (Queensland Institute of Medical Research) Berghofer Medical Research Institute (QIMR) cohort. All participants were assessed using the same neuroticism instrument, the Eysenck Personality Questionnaire-Revised (EPQ-R-S) Short Form’s Neuroticism scale. We found a single-nucleotide polymorphism-based heritability estimate for neuroticism of ~15% (s.e.=0.7%). Meta-analysis identified nine novel loci associated with neuroticism. The strongest evidence for association was at a locus on chromosome 8 (P=1.5 × 10−15) spanning 4 Mb and containing at least 36 genes. Other associated loci included interesting candidate genes on chromosome 1 (GRIK3 (glutamate receptor ionotropic kainate 3)), chromosome 4 (KLHL2 (Kelch-like protein 2)), chromosome 17 (CRHR1 (corticotropin-releasing hormone receptor 1) and MAPT (microtubule-associated protein Tau)) and on chromosome 18 (CELF4 (CUGBP elav-like family member 4)). We found no evidence for genetic differences in the common allelic architecture of neuroticism by sex. By comparing our findings with those of the Psychiatric Genetics Consortia, we identified a strong genetic correlation between neuroticism and MDD and a less strong but significant genetic correlation with schizophrenia, although not with bipolar disorder. Polygenic risk scores derived from the primary UK Biobank sample captured ~1% of the variance in neuroticism in the GS:SFHS and QIMR samples, although most of the genome-wide significant alleles identified within a UK Biobank-only GWAS of neuroticism were not independently replicated within these cohorts. The identification of nine novel neuroticism-associated loci will drive forward future work on the neurobiology of neuroticism and related phenotypes

    Genome-wide analysis of over 106  000 individuals identifies 9 neuroticism-associated loci

    Get PDF
    Neuroticism is a personality trait of fundamental importance for psychological well-being and public health. It is strongly associated with major depressive disorder (MDD) and several other psychiatric conditions. Although neuroticism is heritable, attempts to identify the alleles involved in previous studies have been limited by relatively small sample sizes. Here we report a combined meta-analysis of genome-wide association study (GWAS) of neuroticism that includes 91 370 participants from the UK Biobank cohort, 6659 participants from the Generation Scotland: Scottish Family Health Study (GS:SFHS) and 8687 participants from a QIMR (Queensland Institute of Medical Research) Berghofer Medical Research Institute (QIMR) cohort. All participants were assessed using the same neuroticism instrument, the Eysenck Personality Questionnaire-Revised (EPQ-R-S) Short Form’s Neuroticism scale. We found a single-nucleotide polymorphism-based heritability estimate for neuroticism of ~15% (s.e.=0.7%). Meta-analysis identified nine novel loci associated with neuroticism. The strongest evidence for association was at a locus on chromosome 8 (P=1.5 × 10−15) spanning 4 Mb and containing at least 36 genes. Other associated loci included interesting candidate genes on chromosome 1 (GRIK3 (glutamate receptor ionotropic kainate 3)), chromosome 4 (KLHL2 (Kelch-like protein 2)), chromosome 17 (CRHR1 (corticotropin-releasing hormone receptor 1) and MAPT (microtubule-associated protein Tau)) and on chromosome 18 (CELF4 (CUGBP elav-like family member 4)). We found no evidence for genetic differences in the common allelic architecture of neuroticism by sex. By comparing our findings with those of the Psychiatric Genetics Consortia, we identified a strong genetic correlation between neuroticism and MDD and a less strong but significant genetic correlation with schizophrenia, although not with bipolar disorder. Polygenic risk scores derived from the primary UK Biobank sample captured ~1% of the variance in neuroticism in the GS:SFHS and QIMR samples, although most of the genome-wide significant alleles identified within a UK Biobank-only GWAS of neuroticism were not independently replicated within these cohorts. The identification of nine novel neuroticism-associated loci will drive forward future work on the neurobiology of neuroticism and related phenotypes

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2–4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease
    corecore