46 research outputs found

    What is the complexity of volume calculation?

    Get PDF
    We study the worst case complexity of computing ε-approximations of volumes of d-dimensional regions g([0, 1]d ), by sampling the function g. Here, g is an s times continuously differentiable injection from [0, 1]d to R d , where we assume that s ≥ 1. Since the problem can be solved exactly when d = 1, we concentrate our attention on the case d ≥ 2. This problem is a special case of the surface integration problem studied in [12]. Let c be the cost of one function evaluation. The results of [12] might suggest that the ε- complexity of volume calculation should be proportional to c(1/ε) d/s when s ≥ 2. However, using integration by parts to reduce the dimension, we show that if s ≥ 2, then the complexity is proportional to c(1/ε) (d−1)/s . Next, we consider the case s = 1, which is the minimal smoothness for which our volume problem is well-defined. We show that when s = 1, an ε-approximation can be computed with cost proportional to at most c(1/ε) (d−1)d/2 . Since a lower bound proportional to c(1/ε) d−1 holds when s = 1, it follows that the complexity in the minimal smoothness case is proportional to c(1/ε) when d = 2, and that there is a gap between the lower and upper bounds when d ≥ 3

    Herpesvirus Telomerase RNA (vTR) with a Mutated Template Sequence Abrogates Herpesvirus-Induced Lymphomagenesis

    Get PDF
    Telomerase reverse transcriptase (TERT) and telomerase RNA (TR) represent the enzymatically active components of telomerase. In the complex, TR provides the template for the addition of telomeric repeats to telomeres, a protective structure at the end of linear chromosomes. Human TR with a mutation in the template region has been previously shown to inhibit proliferation of cancer cells in vitro. In this report, we examined the effects of a mutation in the template of a virus encoded TR (vTR) on herpesvirus-induced tumorigenesis in vivo. For this purpose, we used the oncogenic avian herpesvirus Marek's disease virus (MDV) as a natural virus-host model for lymphomagenesis. We generated recombinant MDV in which the vTR template sequence was mutated from AATCCCAATC to ATATATATAT (vAU5) by two-step Red-mediated mutagenesis. Recombinant viruses harboring the template mutation replicated with kinetics comparable to parental and revertant viruses in vitro. However, mutation of the vTR template sequence completely abrogated virus-induced tumor formation in vivo, although the virus was able to undergo low-level lytic replication. To confirm that the absence of tumors was dependent on the presence of mutant vTR in the telomerase complex, a second mutation was introduced in vAU5 that targeted the P6.1 stem loop, a conserved region essential for vTR-TERT interaction. Absence of vTR-AU5 from the telomerase complex restored virus-induced lymphoma formation. To test if the attenuated vAU5 could be used as an effective vaccine against MDV, we performed vaccination-challenge studies and determined that vaccination with vAU5 completely protected chickens from lethal challenge with highly virulent MDV. Taken together, our results demonstrate 1) that mutation of the vTR template sequence can completely abrogate virus-induced tumorigenesis, likely by the inhibition of cancer cell proliferation, and 2) that this strategy could be used to generate novel vaccine candidates against virus-induced lymphoma
    corecore