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Abstract 

We consider the problem of optimal quadratures for 

integrands f: [-1,1] ~ ~ which have an analytic extension f 

to an open disk D of radius r about the origin such that 
r 

1 

1 on D . 
r 

If r = 1, we show that the penalty for sampling 

the integrand at zeros of the Legendre polynomial of degree 

n rather than at optimal points, tends to infinity with n. 

In particular there is an "infinite" penalty for using Gauss 

quadrature. On the other hand, if r > 1, Gauss quadrature 

is almost optimal. These results hold for both the worst-

case and asymptotic settings~ 
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1. Introduction. 

1 
This paper deals with approximations to J- l f(x)dx 

by algorithms whose sole knowledge of f consists of samples 

at points from the interval [-1,1]. We assume that inte-

grands belong to the class F(D ) of funct~~ns f: [-1,1] ~m 
r 

having an analytic extension to Dr = [z E c: Izi < r) whose 

modulus is bounded by unity on D . 
r 

One of the best-known methods of approximating such 

integrals is Gauss quadrature. This algorithm is derived by 

requiring the approximation to be exact for polynomials of 

as high a degree as possible. There are many papers dealing 

with the error analysis of Gauss quadratures, see for instance 

[1], [6], [7). [8), [9J, [12J. In particular, sharp error esti-

mates are known for analytic functions on the ellipse with 

foci +1 and the sum of semi-axes q, where q > 1. The 

behavior of Guass quadrature for the class F(D ) with r > 1 
r 

follows easily. We know no previous results for the class 

The goal of this paper is not the study of Gauss quadra-

ture per se. We are actually interested in the intrinsic 

error of Gauss information, i.e., the minimal error among all 

algorithms which evaluate the integrand at Gauss nodes. 

(There is no a priori reason to believe that Gauss quadrature 



uses Ga~s~ information optimally, L.e., that the error of 

Gauss qua~ature equals the intrinsic error of Gauss infor-

mation.) Our aim is to compare the intrinsic error of Gauss 

information using n nodes to the n-th minimal error, i.e., 

the minimal error among all algorithms which evaluate the 

integrand at n points. When the former is worse than 

the latter, this tells us that not only is Gauss quadrature 

bad, but it is bad precisely because any algorithm using 

Gauss information is bad. 

A number of papers [3] ,CIa], [11] show that for large 

values of r Gauss quadrature is almost optimal. Note that 

as r increases the class F(D ) looks more like a class of 
r 

polynomials. while F(D ) consists of constants. 
00 

In this 

paper we ad~ress the question: 

Is Gauss quadrature close to optimal for all r? 

We pursue our results in both a worst-case and an 

asymptotic setting [14], [15]. When r = 1, there is no 

"breathing room" between the interval of integration and the 

region of analyticity of integrands. We first consider the 

case r = 1 in the worst-case setting. Due to [4], [5].' the 

n-th minimal worst-case error is roughtly exp(-~) for some 

c > O. On the other hand, we show that in the worst-case 

setting the error of any algorithm using n Gauss nodes is 

at least about n- 2 

3 
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We next consider the case r = 1 in the asymptotic setting. 

We apply ~eneral results of [15) to show that the n-th minimal 

asymptotic error is roughtly exp(-GJh) for some c > O. We 

prove that the minimal (asymptotic) error of any algorithm 

using n Gauss nodes is roughly n -2 

Hence in both settings there is an unbounded penalty 

for using Gauss nodes when r = 1. We stress that this is 

a bad property of Gauss nodes rather than Gauss quadrature. 

That is, this holds for any algorithm using Gauss nodes. 

We finally discuss the case r > 1 which allows some 

"breathing room" between the interval of integration and the 

region of analyticity of integrands. We show that in both the 

worst-case and asymptotic settings the n-th minimal error is 

roughly exp(-c n) for some c > 0 and that Gauss quadrature 

is almost optimal. 

Hence optimality of Gauss quadrature for analytic func-

tions requires a strong assumption on analyticity of inte-

grands f, i.e., f E F(D ) with r > 1. 
r 

The integration 

problem for the class F(D ) with r > 1 is essentially easier 
r 

than the corresponding problem for the class F(D
l
). 



2. How.bad is Gauss guadrature when r = l? 

2.1. Worst-case setting. 

We want to approximate rl f(x)dx for f E F = J-l 

using the following information about f 

where x. € [-1,1]. By an algorithm ~ we mean any mapping 
~ 

such that ~: Nn(F) 4~. If ~ is 1 inear .' i. e. , 

,...n ) 
= -k=l akf(~ for some we will refer to 

quadrature rule (or, more briefly. a guadrature). 

~(N (f» n 

as a 

In the worst-case sett~ng we measure the error e(N ,~) 
n 

of an algorithm using N by 
n 

1 
:= sUP(\:_l f(x)dx - qJ(Nn(f) \: f E F}. 

It is well-known, see [2] and also [14, Thm. 3.1, p. 54], 

that 

(1) e (N ) 
n 

1 
:= inf e (N ,t'Il) = supr f' 

n -r ',,-1 
tp 

f (x) dx: f E F, N (f) 
n 

and the infimum in (1) is attained for a linear algorithm 

(quadrature). Bojanov [4], [5] proved that 

(2 ) e(n) := inf e(N) 2 exp(-5TT,,/n/2) 
n 

x l ,x2 ,···,xn 

and found information N * and a quadrature Q *. n n . 

5 

= OJ 
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(3 ) 

Q *(N *(f» 
n n 

n 
= !k=l ~*f(~*), 

such that 

(4) 

Due to [2], see also [14, Thm. 7.1, p. 48], the estimate (2) 

is valid even if the points x. are chosen adaptively, i.e., x. 
~ ~ 

is allowed to depend on f(x
l
},f(X

2
),··· ,f(x

i
_

l
). Hence N * 

n 

and Qn* are almost optimal, i.e., the choice of ~* and ~* 

nearly minimizes the error of any algorithm using n samples. 

We compare the almost optimal information N * with Gauss 
n 

. f . G 
~n ormat~on N . 

n 

(5) 

where 'k is the k-th zero of the Legendre polynomial P
n

. We 

now prove that the choice of nodes sk is very poor. 

Theorem 1: 

G -2 
e (N ) = ~ (n ). 

n 

Here we use the @-notation, which may be thought of as a "two-

sided" O-notation. That is, f = ®(g) iff f = O(g) and g = O(f). 

Proof: Let h(z) 
p (z) 

n ) . 
n 

z P (l/z) 
n 

Note that 

h E F, N~(h) = 0 and Ih(z) I = 1 for Iz1 = 1. We first prove that 



(6) I 
- n 

J . 
n 

1 2 
Due to [4] we have e(N) = :_llh(x) I dx which 

proves the left inequality of (6). Choose now an arbitrary 

g € F such that NG(g) = O. Since the function g(z)/h(z) is 
n 

analytic in D
l

, by the maximum modulus principle we get 

7 

sup \ g (z) /h (z) 1 = 
Z€D

l 

sup Ig(z)/h(z) \ = 
\z\=l 

sup Ig(z) 1 ~ l. 
\zl=l 

Hence g(x) ~ \g(x) \ ~ Ih(x) I for every x € [-lJl] .. Since g 

is arbitrary. this and (1) yield e (N G) 2 J. The proof of 
n n 

(6) is completed. 

By 

(see [12, p. 87]), we get 

n 
t cos e) ] de 

where t = jl 2 
- x and x E [OJ 1]. For n 2 4 we have 

( 1 + (n-2) (n-3)t2 )2 n(n-1)t2 n(n-1) (n-2) (n-3) 4 
8 ~ 1 + 4 + 64 t 

n = (1 + t ) ~ exp ( n t) . 



, . 
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We thus pr9ved 

s(x) € [-1,1]. Due to Markov's inequality we have for 

2 2 
1 , \ P' (~) \ ~ n max \ P ( x) \ = n . 

n \xl~l n 
Therefore for 

(8) 
2 

\ P n (x) \ 2 1 - n (1 - x). 

We are now ready to estimate I and J. We first show n n 
-2 

that I 2 c,n n _ 
for a positive c

1 
which does not depend on n. 

By the righL inequality of (7) we get 

1 P (x) 2 1 2 1 
I = - , [ n n ] dx 2 2 fo \Pn(x) \ exp(-:nJl 

n 0 x P (l/x) 
n 

2 2 :! \Pn(x) \2eXP(_2~ - x
2

)dx =: tn' 

2 
where a = 1 - 1/(2n ). 

2 - x )dx 

Since eXp(-2~1 - x
2

) monotonically increases, due to (8) we have 

..... eXp(-2~ 2 1 2 2 I n 2 2 - a )Ja(l - n (l-x)) dx 

2 2 exp(-2) _1_[1 2 3 7 exp(-2) - (l-n (l-a)) ] = 
3n

2 
12 n 

2 

Thus 
7 -2 

In 2 12 exp(-2)n . 

To complete the proof it is enough to show that I
n 
~ C2n-2 

where c
2 

does not depend on n. By the left inequality of (7), 
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for w = (n-2) (n-3)/S we get 

I'll 
p (x) 

rl dx = -2 n 
Idx ~ 2 J 

n " 0 n " 0 2 2 x p ( l/x) [l+w (l-x )] 
n 

-2 rl dx -2 1 dx 
= 2 (1 + w) ~ 2 (l+w) J 0 

" 0 [1 w X2 ]2 [1 ~ x] 2 
l+w l+w 

-1 16 
= 2(1 + w) = 2 

n - Sn + 14 

This gives the desired inequality and completes the proof. 

To understand the bad properties of Gauss information, 

suppose one needs to find an e-approximation, i.e., to compute 

I = I (f) S1..:C:' that \J~ f(x)dx - I (f) I ~ € for all f from F. 

To get I(f) ~Ne use n samples of f. From (2) and (4) we conclude 

that the mi-.:"::lal number of samples n has to be about 

2 
tn 1/ €. .g the information N * of (3) with 

n 

n = rOo os'!"'" -2 '_n
2
1/ e:l, the quadrature Q * (N * (f) of (3) yields 

n n 

The cost of Q * 
n 

is proportional to n. From this we conclude that the 

e:-complexity, i.e., the minimal cost of computing an €-

approximation is given by 

2 
comp(e:) = ®(J.n l/d 

and Q * is an almost optimal complexity algorithm. 
n 



Suppese now one wants to find an €-approximation using 

n Gauss nodes. Then, due to Theorem 1, n has to be of 

-1/2 
order € and the €-complexity (minimal cost) of Gauss 

information is given by 

-1/2 
comp G ( €) = ® ( € ) . 

Let pen(€) := comPG(d/comp(d be the penalty of using Gauss 

information instead of the optimal one. From this we get 

Theorem 2: 

so that 

lim pen (d = +00. 

r O 

2.2 Asymptotic setting. 

In the worst-case setting the error of an algorithm is 

defined for fixed information N and for the worst integrand 
n 

f. In some situations we prefer to fix f and apply to it 

information N with n tending to infinity. This is called 
n 

the asymptotic setting. In this setting, information is an 

infinite sequence 

N(f) = [f(xl),f(x2), ... ,f(~), ... ]. 

We stress that the points x. can be chosen adaptively, i.e., 
~ 

10 
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-
By an algorithm using N we now mean a sequence 

- 00 
~ = (o} 1 where Muses N (f) = [f(x

l
), ... ,f(x )], n n= ~n n n 

i. e. , ~ : N (F) .. IR. 
n n 

The n-th error of at f is defined 

as 

e (~, f) 
n 

1 
:= If -1 f(x)dx - CP n (Nn (f» I· 

In the asymptotic setting we wish to choose an algorithm 

CP as well as the nodes ~ for which the sequence en(~,f) 

goes to zero as fast as possible for all f from F. 

Recently, Trojan [15] showed a surprising relation 

between the worst-case and a~ymptotic settings. For the 

integration problem his results can be summarized as follows. 

(The quantities e(N ) and e(n) are defined as in section 2.1.) 
n 

Given f E F, let N
f 

denote the following nonadaptive 
n 

information 

f 
N (g) = 

n 
A '" 

[g (xl),g (x2 ),··· .g (xn )], 

where i l = x and X. = x.(f(~l), ... ,f(i. 1» for i = 2,3, ... ,n. 
1 l. l. l.-

- -
( i) For any information N, any algorithm using N 

00 

and any nonnegative sequence (6) 1 converging to zero. ~~e 
n n= 

set FO of f for which 

is boundary. 



- -
(ii) There exist information N* and an algorithm ~* 

using N* such that 

Remark: 

F - FO = F. 

e (cp * , f) .:s: e (L n/ 4J ) • 
n 

The statement in (i) that FO is boundary means 

That is, for any nonnegative sequence (OnJ:=l 

converging to zero, the set of f for which 

is dense in F. 

e (cp,f) 
n 

1 im su p --:';~-f-
n~ 0 e (N ) 

n n 

> 0 

From (i) with 0 = exp(-Jh) and from (2) it follows 
n 

-

12 

that 

that for arbitrary information N and an arbitrary algorithm 

-
cp using N the set of f for which 

(9) 

is boundary. 

Let N* and Q* be given by (3). Define information 
n n 

(10) N*(f) := [Nr(f),N~(f),N4(f), ... ,N*k(f), .. .J 
2 

and the algorithm ~* 
-= (~* J using N* as 

n 

(11) ~~(Nn(f» := Q*k-l(N*k-l(f», 
2 2 

-where N consists of the first n samples of N*. From (4) 
n 

we get 
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(12) - -en (~*, f) ~ exp(-'!'TJ(n+l)/8) , 

- -
for all f from F. Due to (10), N* and ~* are almost 

optimal in the asymptotic setting. 

-We now compare N* to corresponding Gauss information, 

(13) 
-G G G G G 
N (f) := [N

1
(f),N

2
(f),N

4
(f), ... ,N k(f), ... ] 

2 

G 
where N k is given by (5). We prove that Gauss information 

2 
is also very poor in the asymptotic setting. 

Theorem 3: For any algorithm ~ 
-G 

using N and any nonnegative 

sequence [~ } converging to zero the set of f for which 
n 

-2 
e (~Jf) = O(n 0 ) is boundary. 

n n 

Proof: For each positive integer n, let k = L ~og2 (n+l)j and 

.....G G G G 
N~(f) := [N l (f),N

2
(f), ... ,N k_l(f)]. We first estimate 

~ 2 
e{N). The same arguments as in the proof of (6) with 

n 

k-l 
h{z) =n. 0 

J= 

lead to the inequality 

(14) 

P . (z) 

2 J 2 ---=---] 

2
j 

z P . (liz) 
2 J 

Let b 
-2k+l 

2 . Due to the right hand side of (7) 

for x E [b,l] we have 
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- - -k-l· 2 j 2 k-l jp 
[n-.- 0 x P . (l/x)] ,/ exp(2l:. 0 2 l-b)'::;; exp(2J2). 

J== J ~ J== 
2 

From (8) for x e [b~l] we get 

Observe that c exists and is positive. Hence h
2

(x) 2 

c exp(-2j1) for b ~ x.::;; 1. We now estimate I
k

. 

1 2 12M 
Ik == 2 So h (x)dx 2 2 !b h (x)dx 2 2(1-b)c exp(-2~2) 

= 2(1 - ~_2-2k+l)c exp(-2J2) 2 2-2k+lc exp(-2J2). 

Since 2-2k 2 n- 2/4, (14) implies 

for a positive c 1 which does not depend on n. Note that this 

estimate is sharp. 
G -2 

Indeed, Theorem 1 yields e(N k-l) = ®(n ). 
2 

Therefore 

This and (i) complete the proof. 

Theorem 3 states that the speed of convergence of algorithms 

-2 
using Gauss information is at most n whereas (9) and (12) 

state that the optimal speed is roughly exp(-c)n) where c > o. 
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We now show the superiority of the optimal algorithm. 

-2 _ C 
Let sl (n) _= nand s2 (n) = exp(-I-Vn}. Assume that one wants 

to choose the minimal n such that s, (n) ~ €. Then for 
1. 

the function sl we have n = n
l

(€) = ~(e-l/2) whereas for the 

function s2 we have n = n 2 (€) = 9(£n
2
1/€). The penalty 

function 

pen( d := 
n

2 
( e: ) 

goes to +00 as e goes to zero. 



3. Gauss-guadrature is almost optimal when r > 1. 

In this section we show that Gauss quadrature is almost 

optimal for the class F(D ) with r > 1 in both the worst
r 

case and asymptotic settings. 

We begin with the worst-case setting. The quantities 

e(N ,~), e(N ). and e(n) are defined as in Section 2.1, 
n n 

16 

except that now F = F(D). To show Gauss quadrature is almost 
r 

optimal, we need some auxiliary results for the integration 

problem for a different class of integrands. Let E be 
q 

an ellipse whose foci are +1 and sum of semi-axes is q > 1. 

By F(E ) we mean the set of functions f: [-1,1] ~ R having an 
q 

analytic extension f to E such that lfl ~ 1 on E . 
q q 

For 

the class: E ) Bakhvalov [1] proved (see also [6], [7], 
q 

[8], [12]) that the minimal worst-case error of algorithms 

using n samples of f 
. -2n 

is ®(q ). Furthermore he showed 

-2n that the worst-case error of Gauss quadrature is of order q 

Thus Gauss quadrature is almost optimal in the worst-case 

setting for the class F(E ). 
q 

We shall use Bakhvalov's results to show that Gauss 

quadrature is also almost optimal for F(D ) with r > l. r 

ql = r + jr2 + 1 and q2 = r + Jr2 - l. Since E G: D c 
q2 r 

we have F(E ) c F(D ) c F(E ) . Therefore there exist 
ql r q2 

Let 

E 
ql 

positive constants c
1 

and c
2

' independent of n, such that 



(15) 

G -
Here N , G are Gauss information and Gauss quadrature resn n 

pectively. Observe that q2/q l < 1 and for large r the 

ratio q2/q l is close to one. Since r > 1, 

17 

to zero as n tends to infinity. Thus there is a large gap 

in the bounds in the estimate (15). In contrast to this, 

the e-complexity is known to within a constant. (The 

e-complexity is defined as at the end of Section 2.1, except 

that now F = F(D ).) Since comp(e) = a(inf(n: e(n) ~ e}), 
r 

(15) yields 

Theorem 4: Fer the class F(D ) with r > 1 the e-complexity r 

of the integration problem in the worst-case setting is 

comp(e) = ®(tn l/e). 

Furthermore, Gauss quadrature Gn with n = ftn(c2/e)/(2tn q2~ 

yields an e-approximation with almost minimal complexity. 

We now turn to the asymptotic setting. From Trojan's 

result (i) with F = F(D ) and from (15) we get 
r 

-
Theorem 5: For arbitrary information N, any algorithm ~ 

using -
N and any nonnegative sequence (5 ) converging to 

n 

zero, ~~e set of f for which 



is boundary. 

Furthermore. 
-G G 

for the algorithm ~ = (~ } defined as 
n 

the following sequence of Gauss quadratures 

~G(N (f)) 
n n := G k-l{N k-l(f)), 

2 2 
k = Ltog2 (n+l) J , 

where N consists of n 
n 

-G samples of N from (12), we have 

-G 
e (~ ,f) 

n 
-2n = 0 (q2 ), 'Vf E F(D ). 

r 

Theorem 5 states that the speed of convergence of Gauss 
-2n 

quadrature~ is at least q2 whereas the speed of convergence 

f l ' h . -2n o any a gorlt m ~s at most ql . We stress that there is 

no practic 
-2n -2n 

difference between the functions ql and q2 

Indeed, su~ ~se we choose the minimal n such that 

-2n 
q. ~ €. Then 
~ 

n = n. (d = f 1, n 1/ € 1 = ® (1, n 1/ e:) • 
~ 21,n l/q. 

1 

18 

Since n
l

(€) is of the same order as n
2

(€), we have to perform 

roughly the same number of function evaluation to make the 

error smaller than €, whether the speed of convergence is 

-2n 
or q2 This establishes that Gauss quadrature is 

almost optimal in the asymptotic setting for the class F(D ) 
r 

with r > 1. 
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