24 research outputs found

    Intercomparison of stratospheric chemistry models under polar vortex conditions

    Get PDF
    Several stratospheric chemistry modules from box, 2-D or 3-D models, have been intercompared. The intercomparison was focused on the ozone loss and associated reactive species under the conditions found in the cold, wintertime Arctic and Antarctic vortices. Comparisons of both gas phase and heterogeneous chemistry modules show excellent agreement between the models under constrained conditions for photolysis and the microphysics of polar stratospheric clouds. While the mean integral ozone loss ranges from 4-80% for different 30-50 days long air parcel trajectories, the mean scatter of model results around these values is only about +/-1.5%. In a case study, where the models employed their standard photolysis and microphysical schemes, the variation around the mean percentage ozone loss increases to about +/-7%. This increased scatter of model results is mainly due to the different treatment of the PSC microphysics and heterogeneous chemistry in the models, whereby the most unrealistic assumptions about PSC processes consequently lead to the least representative ozone chemistry. Furthermore, for this case study the model results for the ozone mixing ratios at different altitudes were compared with a measured ozone profile to investigate the extent to which models reproduce the stratospheric ozone losses. It was found that mainly in the height range of strong ozone depletion all models underestimate the ozone loss by about a factor of two. This finding corroborates earlier studies and implies a general deficiency in our understanding of the stratospheric ozone loss chemistry rather than a specific problem related to a particular model simulation

    Midlatitude ClO during the maximum atmospheric chlorine burden: In situ balloon measurments and model simulations

    Get PDF
    Chlorine monoxide (ClO) plays a key role in stratospheric ozone loss processes at midlatitudes. We present two balloon-borne in situ measurements of ClO conducted in northern hemisphere midlatitudes during the period of the maximum of total inorganic chlorine loading in the atmosphere. Both ClO measurements were conducted on board the TRIPLE balloon payload, launched in November 1996 in Leon, Spain, and in May 1999 in Aire sur l'Adour, France. For both flights a ClO daylight and night-time vertical profile was derived over an altitude range of approximately 15 - 35 km. ClO mixing ratios are compared to model simulations performed with the photochemical box model version of the Chemical Lagrangian Model of the Stratosphere (CLaMS). Simulations along 24-hour backward trajectories were performed to study the diurnal variation of ClO in the midlatitude lower stratosphere. Model simulations for the flight launched in Aire sur l'Adour 1999 show an excellent agreement with the ClO measurements. For the flight launched in Leon 1996, an overall good agreement is found, whereas the flight is characterized by a more complex dynamical situation due to a possible mixture of vortex and non-vortex air. We note that for both flights at solar zenith angles greater than 86 degrees - 87 degrees simulated ClO mixing ratios are higher than observed ClO mixing ratios. However, the present findings indicate that no substantial uncertainties exist in midlatitude chlorine chemistry of the stratosphere

    New perspectives on the ecology and evolution of siboglinid tubeworms

    Get PDF
    Siboglinids are tube-dweling annelids that are important members of deep-sea chemosynthetic communities, which include hydrothermal vents, cold seeps, whale falls and reduced sediments. As adults, they lack a functional digestive system and rely on microbial endosymbionts for their energetic needs. Recent years have seen a revolution in our understanding of these fascinating worms. Molecular systematic methods now place these animals, formerly known as the phyla Pogonophora and Vestimentifera, within the polychaete clade Siboglinidae. Furthermore, an entirely new radiation of siboglinids, Osedax, has just recently been discovered living on whale bones. The unique and intricate evolutionary association of siboglinids with both geology, in the formation of spreading centres and seeps, and biology with the evolution of large whales, offers opportunities for studies of vicariant evolution and the calibration of molecular clocks. Moreover, new advances in our knowledge of siboglinid anatomy coupled with molecular characterization of microbial symbiont communities are revolutionizing our knowledge of host-symbiont relationships in the Metazoa. Despite these advances, considerable debate persists concerning the evolutionary history of siboglinids. Here we review the morphological, molecular, ecological and fossil data in order to address when and how siboglinids evolved. We discuss the role of ecological conditions in the evolution of siboglinids and present possible scenarios of the evolutionary origin of the symbiotic relationships between siboglinids and their endosymbiotic bacteria
    corecore