2,542 research outputs found

    Longitudinal static optical properties of hydrogen chains: finite field extrapolations of matrix product state calculations

    Get PDF
    We have implemented the sweep algorithm for the variational optimization of SU(2) x U(1) (spin and particle number) invariant matrix product states (MPS) for general spin and particle number invariant fermionic Hamiltonians. This class includes non-relativistic quantum chemical systems within the Born-Oppenheimer approximation. High-accuracy ab-initio finite field results of the longitudinal static polarizabilities and second hyperpolarizabilities of one-dimensional hydrogen chains are presented. This allows to assess the performance of other quantum chemical methods. For small basis sets, MPS calculations in the saturation regime of the optical response properties can be performed. These results are extrapolated to the thermodynamic limit.Comment: Submitted to J. Chem. Phy

    Design and experimental validation of a compact collimated Knudsen source

    Get PDF
    In this paper we discuss the design and performance of a collimated Knudsen source which has the benefit of a simple design over recirculating sources. Measurements of the flux, transverse velocity distribution and brightness at different temperatures were conducted to evaluate the performance. The scaling of the flux and brightness with the source temperature follow the theoretical predictions. The transverse velocity distribution in the transparent operation regime also agrees with the simulated data. The source was found able to produce a flux of 101410^{14} s1^{-1} at a temperature of 433 K. Furthermore the transverse reduced brightness of an ion beam with equal properties as the atomic beam reads 1.7×1021.7 \times 10^2 A/(m2{}^2 sr eV) which is sufficient for our goal: the creation of an ultra-cold ion beam by ionization of a laser-cooled and compressed atomic rubidium beam

    Cavity-enhanced photoionization of an ultracold rubidium beam for application in focused ion beams

    Get PDF
    A two-step photoionization strategy of an ultracold rubidium beam for application in a focused ion beam instrument is analyzed and implemented. In this strategy the atomic beam is partly selected with an aperture after which the transmitted atoms are ionized in the overlap of a tightly cylindrically focused excitation laser beam and an ionization laser beam whose power is enhanced in a build-up cavity. The advantage of this strategy, as compared to without the use of a build-up cavity, is that higher ionization degrees can be reached at higher currents. Optical Bloch equations including the photoionization process are used to calculate what ionization degree and ionization position distribution can be reached. Furthermore, the ionization strategy is tested on an ultracold beam of 85^{85}Rb atoms. The beam current is measured as a function of the excitation and ionization laser beam intensity and the selection aperture size. Although details are different, the global trends of the measurements agree well with the calculation. With a selection aperture diameter of 52 μ\mum, a current of (170±4)\left(170\pm4\right) pA is measured, which according to calculations is 63% of the current equivalent of the transmitted atomic flux. Taking into account the ionization degree the ion beam peak reduced brightness is estimated at 1×1071\times10^7 A/(m2^2\,sr\,eV).Comment: 13 pages, 9 figure

    Laser application to measure vertical sea temperature and turbidity, design phase

    Get PDF
    An experiment to test a new method was designed, using backscattered radiation from a laser beam to measure oceanographic parameters in a fraction of a second. Tyndall, Rayleigh, Brillouin, and Raman scattering all are utilized to evaluate the parameters. A beam from a continuous argon ion laser is used together with an interferometer and interference filters to gather the information. The results are checked by direct measurements. Future shipboard and airborne experiments are described

    Disulfides as redox switches : from molecular mechanisms to functional significance

    Full text link
    The molecular mechanisms underlying thiol-based redox control are poorly defined. Disulfide bonds between Cys residues are commonly thought to confer extra rigidity and stability to their resident protein, forming a type of proteinaceous spot weld. Redox biologists have been redefining the role of disulfides over the last 30&ndash;40 years. Disulfides are now known to form in the cytosol under conditions of oxidative stress. Isomerization of extracellular disulfides is also emerging as an important regulator of protein function. The current paradigm is that the disulfide proteome consists of two subproteomes: a structural group and a redox-sensitive group. The redoxsensitive group is less stable and often associated with regions of stress in protein structures. Some characterized redox-active disulfides are the helical CXXC motif, often associated with thioredoxin-fold proteins; and forbidden disulfides, a group of metastable disulfides that disobey elucidated rules of protein stereochemistry. Here we discuss the role of redox-active disulfides as switches in proteins.<br /

    Direct magneto-optical compression of an effusive atomic beam for high-resolution focused ion beam application

    Get PDF
    An atomic rubidium beam formed in a 70 mm long two-dimensional magneto-optical trap (2D MOT), directly loaded from a collimated Knudsen source, is analyzed using laser-induced fluorescence. The longitudinal velocity distribution, the transverse temperature and the flux of the atomic beam are reported. The equivalent transverse reduced brightness of an ion beam with similar properties as the atomic beam is calculated because the beam is developed to be photoionized and applied in a focused ion beam. In a single two-dimensional magneto-optical trapping step an equivalent transverse reduced brightness of (1.0+0.80.4)(1.0\substack{+0.8-0.4}) ×106\times 10^6 A/(m2^2 sr eV) was achieved with a beam flux equivalent to (0.6+0.30.2)(0.6\substack{+0.3-0.2}) nA. The temperature of the beam is further reduced with an optical molasses after the 2D MOT. This increased the equivalent brightness to (6+52)(6\substack{+5-2})×106\times 10^6 A/(m2^2 sr eV). For currents below 10 pA, for which disorder-induced heating can be suppressed, this number is also a good estimate of the ion beam brightness that can be expected. Such an ion beam brightness would be a six times improvement over the liquid metal ion source and could improve the resolution in focused ion beam nanofabrication.Comment: 10 pages, 8 figures, 1 tabl
    corecore