116 research outputs found
Successful Use of [14C]Paracetamol Microdosing to Elucidate Developmental Changes in Drug Metabolism
Background: We previously showed the practical and ethical feasibility of using [14C]-microdosing for pharmacokinetic studies in children. We now aimed to show that this approach can be used to elucidate developmental changes in drug metabolism, more specifically, glucuronidation and sulfation, using [14C]paracetamol (AAP). Methods: Infants admitted to the intensive care unit received a single oral [14C]AAP microdose while receiving intravenous therapeutic AAP every 6 h. [14C]AAP pharmacokinetic parameters were estimated. [14C]AAP and metabolit
Folate catabolites in spot urine as non-invasive biomarkers of folate status during habitual intake and folic acid supplementation.
Folate status, as reflected by red blood cell (RCF) and plasma folates (PF), is related to health and disease risk. Folate degradation products para-aminobenzoylglutamate (pABG) and para-acetamidobenzoylglutamate (apABG) in 24 hour urine have recently been shown to correlate with blood folate.
Since blood sampling and collection of 24 hour urine are cumbersome, we investigated whether the determination of urinary folate catabolites in fasted spot urine is a suitable non-invasive biomarker for folate status in subjects before and during folic acid supplementation.
Immediate effects of oral folic acid bolus intake on urinary folate catabolites were assessed in a short-term pre-study. In the main study we included 53 healthy men. Of these, 29 were selected for a 12 week folic acid supplementation (400 µg). Blood, 24 hour and spot urine were collected at baseline and after 6 and 12 weeks and PF, RCF, urinary apABG and pABG were determined.
Intake of a 400 µg folic acid bolus resulted in immediate increase of urinary catabolites. In the main study pABG and apABG concentrations in spot urine correlated well with their excretion in 24 hour urine. In healthy men consuming habitual diet, pABG showed closer correlation with PF (rs = 0.676) and RCF (rs = 0.649) than apABG (rs = 0.264, ns and 0.543). Supplementation led to significantly increased folate in plasma and red cells as well as elevated urinary folate catabolites, while only pABG correlated significantly with PF (rs = 0.574) after 12 weeks.
Quantification of folate catabolites in fasted spot urine seems suitable as a non-invasive alternative to blood or 24 hour urine analysis for evaluation of folate status in populations consuming habitual diet. In non-steady-state conditions (folic acid supplementation) correlations between folate marker (RCF, PF, urinary catabolites) decrease due to differing kinetics
Pediatric Microdose Study of [14C]Paracetamol to Study Drug Metabolism Using Accelerated Mass Spectrometry: Proof of Concept
Results: Ten infants (aged 0.1–83.1 months) were included; one was excluded as he vomited shortly after administration. In nine patients, [14C]AAP and metabolites in blood samples were detectable at expected concentrations: median (range) maximum concentration (Cmax) [14C]AAP 1.68 (0.75–4.76) ng/L, [14C]AAP-Glu 0.88 (0.34–1.55) ng/L, and [14C]AAP-4Sul 0.81 (0.29–2.10) ng/L. Dose-normalized oral [14C]AAP Cmax approached median intravenous average concentrations (Cav): 8.41 mg/L (3.75–23.78 mg/L) and 8.87 mg/L (3.45–12.9 mg/L), respectively.Conclusions: We demonstrate the feasibility of using a [14C]labeled microdose to study AAP pharmacokinetics, including metabolite disposition, in young children.Background: Pediatric drug development is hampered by practical, ethical, and scientific challenges. Microdosing is a promising new method to obtain pharmacokinetic data in children with minimal burden and minimal risk. The use of a labeled oral microdose offers the added benefit to study intestinal and hepatic drug disposition in children already receiving an intravenous therapeutic drug dose for clinical reasons.Methods: In an open-label microdose pharmacokinetic pilot study, infants (0–6 years of age) received a single oral [14C]AAP microdose (3.3 ng/kg, 60 Bq/kg) in addition to intravenous therapeutic doses of AAP (15 mg/kg intravenous every 6 h). Blood samples were taken from an indwelling catheter. AAP blood concentrations were measured by liquid chromatography–tandem mass spectrometry (LC-MS/MS) and [14C]AAP and metabolites ([14C]AAP-Glu and [14C]AAP-4Sul) were measured by accelerator mass spectrometry.Objective: The objective of this study was to present pilot data of an oral [14C]paracetamol [acetaminophen (AAP)] microdosing study as proof of concept to study developmental pharmacokinetics in children
Incorporating Baseline Outcome Data in Individual Participant Data Meta-Analysis of Non-randomized Studies.
Background
In non-randomized studies (NRSs) where a continuous outcome variable (e.g., depressive symptoms) is assessed at baseline and follow-up, it is common to observe imbalance of the baseline values between the treatment/exposure group and control group. This may bias the study and consequently a meta-analysis (MA) estimate. These estimates may differ across statistical methods used to deal with this issue. Analysis of individual participant data (IPD) allows standardization of methods across studies. We aimed to identify methods used in published IPD-MAs of NRSs for continuous outcomes, and to compare different methods to account for baseline values of outcome variables in IPD-MA of NRSs using two empirical examples from the Thyroid Studies Collaboration (TSC).
Methods
For the first aim we systematically searched in MEDLINE, EMBASE, and Cochrane from inception to February 2021 to identify published IPD-MAs of NRSs that adjusted for baseline outcome measures in the analysis of continuous outcomes. For the second aim, we applied analysis of covariance (ANCOVA), change score, propensity score and the naïve approach (ignores the baseline outcome data) in IPD-MA from NRSs on the association between subclinical hyperthyroidism and depressive symptoms and renal function. We estimated the study and meta-analytic mean difference (MD) and relative standard error (SE). We used both fixed- and random-effects MA.
Results
Ten of 18 (56%) of the included studies used the change score method, seven (39%) studies used ANCOVA and one the propensity score (5%). The study estimates were similar across the methods in studies in which groups were balanced at baseline with regard to outcome variables but differed in studies with baseline imbalance. In our empirical examples, ANCOVA and change score showed study results on the same direction, not the propensity score. In our applications, ANCOVA provided more precise estimates, both at study and meta-analytical level, in comparison to other methods. Heterogeneity was higher when change score was used as outcome, moderate for ANCOVA and null with the propensity score.
Conclusion
ANCOVA provided the most precise estimates at both study and meta-analytic level and thus seems preferable in the meta-analysis of IPD from non-randomized studies. For the studies that were well-balanced between groups, change score, and ANCOVA performed similarly
Proteomics of human liver membrane transporters: a focus on fetuses and newborn infants
Background: Hepatic membrane transporters are involved in the transport of many endogenous and exogenous compounds, including drugs. We aimed to study the relation of age with absolute transporter protein expression in a cohort of 62 mainly fetus and newborn samples. Methods: Protein expressions of BCRP, BSEP, GLUT1, MCT1, MDR1, MRP1, MRP2, MRP3, NTCP, OCT1, OATP1B1, OATP1B3, OATP2B1 and ATP1A1 were quantified with LC-MS/MS in isolated crude membrane fractions of snap-frozen post-mortem fetal and pediatric, and surgical adult liver samples. mRNA expression was quantified using RNA sequencing, and genetic variants with TaqMan assays. We explored relationships between protein expression and age (gestational age [GA], postnatal age [PNA], and postmenstrual age); between protein and mRNA expression; and between protein expression and genotype. Results: We analyzed 36 fetal (median GA 23.4 weeks [range 15.3–41.3]), 12 premature newborn (GA 30.2 weeks [24.9–36.7], PNA 1.0 weeks [0.14–11.4]), 10 term newborn (GA 40.0 weeks [39.7–41.3], PNA 3.9 weeks [0.3–18.1]), 4 pediatric (PNA 4.1 years [1.1–7.4]) and 8 adult liver samples. A relationship with age was found for BCRP, BSEP, GLUT1, MDR1, MRP1, MRP2, MRP3, NTCP, OATP1B1 and OCT1, with the strongest relationship for postmenstrual age. For most transporters mRNA and protein expression were not correlated. No genotype-protein expression relationship was detected. Discussion and conclusion: Various developmental patterns of protein expression of hepatic transporters emerged in fetuses and newborns up to four months of age. Postmenstrual age was the most robust factor predicting transporter expression in this cohort. Our data fill an important gap in current pediatric transporter ontogeny knowledge
Chapter 8 Characterization of analyte binding and freely dissolved concentrations in environmental and biological materials
The accuracy of plasma natriuretic peptide levels for diagnosis of cardiac dysfunction and chronic heart failure in community-dwelling elderly: a systematic review.
BACKGROUND: measurement of plasma natriuretic peptide levels has been proposed as a simple, accessible test to assist the diagnosis of cardiac dysfunction and heart failure. Most studies have been hospital based and have investigated the relationship between natriuretic peptides and cardiac dysfunction or heart failure in younger populations. OBJECTIVE: we performed a systematic review to evaluate the diagnostic accuracy of plasma natriuretic peptide measurement in elderly patients from the general population. METHODS: electronic searches of MEDLINE and EMBASE from January 1985 to May 2008 were performed. Diagnostic cohort and cross-sectional studies on the accuracy of natriuretic peptides for diagnosis of cardiac dysfunction or chronic heart failure in people aged 75 and over in the community were included. The quality of the selected studies was assessed with the modified QUADAS tool and the data extracted by two independent reviewers. RESULTS: five studies were included. The general quality of the studies was moderate. The extracted data could not be pooled. Negative likelihood ratios for cardiac dysfunction ranged from 0.09 to 0.29. CONCLUSION: we found limited evidence supporting the use of plasma natriuretic peptide measurement for diagnosis of cardiac dysfunction or heart failure in the elderly of 75 years and over in the general population. Important questions about the implementation of plasma natriuretic peptide measurement in daily practice remain unresolved
Application of H-infinity feedback control: Reference tracking on half-axle test rig
status: publishe
Absorption of Hydrophobic Compounds into the Poly(dimethylsiloxane) Coating of Solid-Phase Microextraction Fibers: High Partition Coefficients and Fluorescence Microscopy Images
Optimal decoupling for improved multivariable controller design, applied on an automotive vibration test rig
Within the framework of tracking controller design for an automotive vibration test rig, a new control strategy is developed which is applicable to square multiple-input-multiple-output systems (MIMO-systems) with a certain degree of symmetry. Classical MIMO-controller design is a three step procedure: response measurement, MIMO-identification and MIMO-controller design. The latter two steps are often very cumbersome due to the multivariable character of the problem. In this paper, a new procedure is proposed which replaces the second step with: (1) almost decoupling of the MIMO-system into multiple single-input-single-output systems (SISO-systems) by transformations of the inputs and the outputs and (2) SISO-identifications of the decoupled systems. Thereby simplifying the control-design step to multiple SISO-controller designs. This paper also discusses the successful application of this new procedure on an industrial automotive vibration test rig.status: publishe
- …
