58 research outputs found

    The impact of solvent characteristics on performance and process stability of printed carbon resistive materials

    Get PDF
    Carbon conductive pastes deposited by screen printing are used in many commercial applications including sensors, PCB, batteries, and PV, and as such represent an important value-added coating. An experimental investigation was carried out into the role of the solvent on the drying characteristics, conductivity, and process consistency in screen printed carbon pastes. Four materials with solvent boiling points between 166 and 219°C were deposited at film thickness between 6 and 16 μm, and the sheet resistance and film thickness were measured after successive passes through an industrial dryer operating with an air temperature of 155°C. Sheet resistances of 14 Ω/sq. were obtained with the thicker films while thinner films produced a sheet resistance of 46 Ω/sq. Thinner films achieved a stable resistivity within a 2.5-min residence time, while the thicker films required a residence time in excess of 12.5 min to achieve a stable resistivity. As well as prolonging drying times, the higher boiling point increased the resistivity of the cured film. It is postulated that the lower resistance of the faster drying materials is a result of film stressing increasing inter particle contact. Process models indicate that multiple thin layers are a more efficient means of manufacture for the process parameters examined

    Redundant Notch1 and Notch2 Signaling Is Necessary for IFNγ Secretion by T Helper 1 Cells During Infection with Leishmania major

    Get PDF
    The protective immune response to intracellular parasites involves in most cases the differentiation of IFNγ-secreting CD4+ T helper (Th) 1 cells. Notch receptors regulate cell differentiation during development but their implication in the polarization of peripheral CD4+ T helper 1 cells is not well understood. Of the four Notch receptors, only Notch1 (N1) and Notch2 (N2) are expressed on activated CD4+ T cells. To investigate the role of Notch in Th1 cell differentiation following parasite infection, mice with T cell-specific gene ablation of N1, N2 or both (N1N2ΔCD4Cre) were infected with the protozoan parasite Leishmania major. N1N2ΔCD4Cre mice, on the C57BL/6 L. major-resistant genetic background, developed unhealing lesions and uncontrolled parasitemia. Susceptibility correlated with impaired secretion of IFNγ by draining lymph node CD4+ T cells and increased secretion of the IL-5 and IL-13 Th2 cytokines. Mice with single inactivation of N1 or N2 in their T cells were resistant to infection and developed a protective Th1 immune response, showing that CD4+ T cell expression of N1 or N2 is redundant in driving Th1 differentiation. Furthermore, we show that Notch signaling is required for the secretion of IFNγ by Th1 cells. This effect is independent of CSL/RBP-Jκ, the major effector of Notch receptors, since L. major-infected mice with a RBP-Jκ deletion in their T cells were able to develop IFNγ-secreting Th1 cells, kill parasites and heal their lesions. Collectively, we demonstrate here a crucial role for RBP-Jκ-independent Notch signaling in the differentiation of a functional Th1 immune response following L. major infection

    Combined point of care nucleic acid and antibody testing for SARS-CoV-2 following emergence of D614G Spike Variant

    Get PDF
    Rapid COVID-19 diagnosis in hospital is essential, though complicated by 30-50% of nose/throat swabs being negative by SARS-CoV-2 nucleic acid amplification testing (NAAT). Furthermore, the D614G spike mutant now dominates the pandemic and it is unclear how serological tests designed to detect anti-Spike antibodies perform against this variant. We assess the diagnostic accuracy of combined rapid antibody point of care (POC) and nucleic acid assays for suspected COVID-19 disease due to either wild type or the D614G spike mutant SARS-CoV-2. The overall detection rate for COVID-19 is 79.2% (95CI 57.8-92.9%) by rapid NAAT alone. Combined point of care antibody test and rapid NAAT is not impacted by D614G and results in very high sensitivity for COVID-19 diagnosis with very high specificity

    Globalization and the sociology of Immanuel Wallerstein: A critical appraisal

    Full text link
    By the turn of the 21st century the concept of globalization had earned its place in the social sciences and debate turned more squarely to the theoretical significance of globalization. Yet not all scholars were happy with the notion of globalization. Some claim that is merely a new name for earlier theories and concepts. Among those who reject new paradigmatic thinking on the current age is Immanuel Wallerstein, the world-renowned sociologist and ‘father’ of the worldsystem paradigm. This article is intended as an appraisal of Wallerstein’s oeuvre in the context of the debate on global transformations in the late 20th and early 21st centuries and from the vantage point of the present author’s own critical globalization perspective. The first three parts summarize and assess Wallerstein’s theoretical system and his many contributions to macro, historical and comparative sociology, to development studies and international political economy. The fourth discusses Wallerstein’s assessment of the evolution of the world capitalist system in recent decades, including his views on the concept of globalization, and the fifth focuses on earlier and more recent critical appraisals of his work, including the present author’s own, in light of the recent transformations in world capitalism identified with globalization

    Using urban man-made ponds to reconstruct a 150-year history of air pollution in northwest England

    No full text
    A regional pollution history has been reconstructed for the borough of Halton (northwest England) from four urban ponds in north Cheshire and south Merseyside, using environmental analyses of lake sediment stratigraphies. Mineral magnetism, geochemistry and radiometric dating have produced profiles of pollution characteristics dating from the mid-nineteenth century to present day. These pollution profiles reflect the atmospheric deposition of a range of pollutants over 150 years of intensified industry. Distinct phases of pollution deposition and characteristics are identified reflecting: (1) intensification of industry in the nineteenth century; (2) expansion of industry during the twentieth century; (3) post 1956 Clean Air Acts. This work promotes the potential use of these pollution archives for use in epidemiology to better understand links between human health and environmental pollution, especially for diseases with long latency times, where retrospective pollution exposure assessments are important. © Springer Science+Business Media B.V. 2008

    Evidence for decoupling of atmospheric CO2 and global climate during the Phanerozoic eon

    Full text link
    Atmospheric carbon dioxide concentrations are believed to drive climate changes from glacial to interglacial modes', although geological(1-3) and astronomical(4-6) mechanisms have been invoked as ultimate causes. Additionally, it is unclear(7,8) whether the changes between cold and warm modes should be regarded as a global phenomenon, affecting tropical and high-latitude temperatures alike(9-13), or if they are better described as an expansion and contraction of the latitudinal climate zones, keeping equatorial temperatures approximately constant(14-16). Here we present a reconstruction of tropical sea surface temperatures throughout the phanerozoic eon (the past similar to 550 Myr) from our database(17) of oxygen isotopes in calcite and aragonite shells. The data indicate large oscillations of tropical sea surface temperatures in phase with the cold-warm cycles, thus favouring the idea of climate variability as a global phenomenon. But our data conflict with a temperature reconstruction using an energy balance model that is forced by reconstructed atmospheric carbon dioxide concentrations(18). The results can be reconciled if atmospheric carbon dioxide concentrations were not the principal driver of climate variability on geological timescales for at least one-third of the Phanerozoic eon, or if the reconstructed carbon dioxide concentrations are not reliable
    corecore