5,063 research outputs found

    Estimating rainfall erosivity from daily precipitation records: a comparison among methods using data from the Ebro Basin (NE Spain)

    Get PDF
    Among the major factors controlling soil erosion, as vegetation cover or soil erodibility, rainfall erosivity has a paramount importance since it is difficult to predict and control by humans. Accurate estimation of rainfall erosivity requires continuous rainfall data; however, such data rarely demonstrate good spatial and temporal coverage. Daily weather records are now commonly available, providing good coverage that better represents rainfall intensity behavior than do more aggregated rainfall data. In the present study annual rainfall erosivity was estimated from daily rainfall records, and compared to data obtained employing the RUSLE R factor procedure. A spatially-dense precipitation database of high temporal resolution (15 min) was used. Two methodologies were applied: (i) daily rainfall erosivity estimated using several parametric models, and, (ii) annual rainfall erosivity estimated by regression-based techniques employing several intensity precipitation indices and the modified Fournier index. To determine the accuracy of estimates, several goodness-of-fit and error statistics were computed in addition to a spatial distribution comparison. The daily rainfall erosivity models accurately predicted annual rainfall erosivity. Parametric models with few combined parameters and a periodic function simulating intra-annual rainfall behavior provided the best results. Where daily rainfall records were not available, good estimates of annual rainfall erosivity were also obtained using regression-based techniques based on 5-day maximum precipitation events, the maximum wet spell duration, and the ratio between the lengths of average wet and dry spells. Inherent limitations remain in the use of daily weather records for estimating rainfall erosivity. Future research should focus on incorporating measures of natural rainfall properties of the particular region, including kinetic energy and intensity, and their effects on the soil.We thank the Ebro River Hydrographical Confederation (Confederación Hidrográfica del Ebro; CHE) for providing the data used in this study. The research of M.A. was supported by a JAE-Predoc Research Grant from the Spanish National Research Council (Consejo Superior de Investigaciones Científicas; CSIC).Peer reviewe

    Radiation Hardness Studies in a CCD with High-Speed Column Parallel Readout

    Full text link
    Charge Coupled Devices (CCDs) have been successfully used in several high energy physics experiments over the past two decades. Their high spatial resolution and thin sensitive layers make them an excellent tool for studying short-lived particles. The Linear Collider Flavour Identification (LCFI) collaboration is developing Column-Parallel CCDs (CPCCDs) for the vertex detector of the International Linear Collider (ILC). The CPCCDs can be read out many times faster than standard CCDs, significantly increasing their operating speed. The results of detailed simulations of the charge transfer inefficiency (CTI) of a prototype CPCCD are reported and studies of the influence of gate voltage on the CTI described. The effects of bulk radiation damage on the CTI of a CPCCD are studied by simulating the effects of two electron trap levels, 0.17 and 0.44 eV, at different concentrations and operating temperatures. The dependence of the CTI on different occupancy levels (percentage of hit pixels) and readout frequencies is also studied. The optimal operating temperature for the CPCCD, where the effects of the charge trapping are at a minimum, is found to be about 230 K for the range of readout speeds proposed for the ILC. The results of the full simulation have been compared with a simple analytic model.Comment: 3 pages, 6 figures; presented at IEEE'07, ALCPG'07, ICATPP'0

    The Influence of Radiation Damage on the Deflection of High-Energy Beams in Bent Silicon Crystals

    Get PDF
    Experimental results obtained for deflection of 450 GeV/c protons channeling along the {111} planes in a bent, strongly irradiated silicon crystal are presented. A comparison between the deflection efficiencies in irradiated areas and non-irradiated areas in the crystal shows that irradiation by 2.4 · 1020 protons/cm2 leads to a reduction of around 30 % in deflection efficiency. As a consequence, beam-splitting and extraction from an accelerator by means of a bent crystal are feasible solutions at high energies even for intense beams and during long periods

    Record deflection efficiencies measured for high energy protons in a bent germanium crystal

    Get PDF
    New experimental results on the deflection of high energy protons in a bent germanium crystal are presented. At 450 GeV/c, the 50 mm long crystal gave record deflection efficiencies up to 60% for small angles (1 mrad), while at angles as large as 12 mrad, the efficiency is about 25 times larger than for a silicon crystal of the same size. The experimental results are in good agreement with a model for channeling and deflection developed by Ellison and give - together with a similar comparison for a 200 GeV/c beam - confidence in extrapolations to higher energies (e.g. to LHC), other crystal materials or different deflection angles

    A Compact Beam Stop for a Rare Kaon Decay Experiment

    Get PDF
    We describe the development and testing of a novel beam stop for use in a rare kaon decay experiment at the Brookhaven AGS. The beam stop is located inside a dipole spectrometer magnet in close proximity to straw drift chambers and intercepts a high-intensity neutral hadron beam. The design process, involving both Monte Carlo simulations and beam tests of alternative beam-stop shielding arrangements, had the goal of minimizing the leakage of particles from the beam stop and the resulting hit rates in detectors, while preserving maximum acceptance for events of interest. The beam tests consisted of measurements of rates in drift chambers, scintilation counter hodoscopes, a gas threshold Cherenkov counter, and a lead glass array. Measurements were also made with a set of specialized detectors which were sensitive to low-energy neutrons, photons, and charged particles. Comparisons are made between these measurements and a detailed Monte Carlo simulation.Comment: 39 pages, 14 figures, submitted to Nuclear Instruments and Method

    First Observation of the Rare Decay Mode K-long -> e+ e-

    Full text link
    In an experiment designed to search for and study very rare two-body decay modes of the K-long, we have observed four examples of the decay K-long -> e+ e-, where the expected background is 0.17+-0.10 events. This observation translates into a branching fraction of 8.7^{+5.7}_{-4.1} X 10^{-12}, consistent with recent theoretical predictions. This result represents by far the smallest branching fraction yet measured in particle physics.Comment: 9 pages, 3 figure

    Predator diversity hotspots in the blue ocean

    Get PDF
    Concentrations of biodiversity, or hotspots, represent conservation priorities in terrestrial ecosystems but remain largely unexplored in marine habitats. In the open ocean, many large predators such as tunas, sharks, billfishes, and sea turtles are of current conservation concern because of their vulnerability to overfishing and ecosystem role. Here we use scientific-observer records from pelagic longline fisheries in the Atlantic and Pacific Oceans to show that oceanic predators concentrate in distinct diversity hotspots. Predator diversity consistently peaks at intermediate latitudes (20–30° N and S), where tropical and temperate species ranges overlap. Individual hotspots are found close to prominent habitat features such as reefs, shelf breaks, or seamounts and often coincide with zooplankton and coral reef hotspots. Closed-area models in the northwest Atlantic predict that protection of hotspots outperforms other area closures in safeguarding threatened pelagic predators from ecological extinction. We conclude that the seemingly monotonous landscape of the open ocean shows rich structure in species diversity and that these features should be used to focus future conservation efforts

    A straw drift chamber spectrometer for studies of rare kaon decays

    Full text link
    We describe the design, construction, readout, tests, and performance of planar drift chambers, based on 5 mm diameter copperized Mylar and Kapton straws, used in an experimental search for rare kaon decays. The experiment took place in the high-intensity neutral beam at the Alternating Gradient Synchrotron of Brookhaven National Laboratory, using a neutral beam stop, two analyzing dipoles, and redundant particle identification to remove backgrounds
    corecore