45 research outputs found

    Effects of Intermittent IL-2 Alone or with Peri-Cycle Antiretroviral Therapy in Early HIV Infection: The STALWART Study

    Get PDF
    The Study of Aldesleukin with and without antiretroviral therapy (STALWART) evaluated whether intermittent interleukin-2 (IL-2) alone or with antiretroviral therapy (ART) around IL-2 cycles increased CD4+ counts compared to no therapy

    Genome-enabled insights into the biology of thrips as crop pests

    Get PDF
    Background The western flower thrips,Frankliniella occidentalis(Pergande), is a globally invasive pest and plant virus vector on a wide array of food, fiber, and ornamental crops. The underlying genetic mechanisms of the processes governing thrips pest and vector biology, feeding behaviors, ecology, and insecticide resistance are largely unknown. To address this gap, we present theF. occidentalisdraft genome assembly and official gene set.Results We report on the first genome sequence for any member of the insect order Thysanoptera. Benchmarking Universal Single-Copy Ortholog (BUSCO) assessments of the genome assembly (size = 415.8 Mb, scaffold N50 = 948.9 kb) revealed a relatively complete and well-annotated assembly in comparison to other insect genomes. The genome is unusually GC-rich (50%) compared to other insect genomes to date. The official gene set (OGS v1.0) contains 16,859 genes, of which similar to 10% were manually verified and corrected by our consortium. We focused on manual annotation, phylogenetic, and expression evidence analyses for gene sets centered on primary themes in the life histories and activities of plant-colonizing insects. Highlights include the following: (1) divergent clades and large expansions in genes associated with environmental sensing (chemosensory receptors) and detoxification (CYP4, CYP6, and CCE enzymes) of substances encountered in agricultural environments; (2) a comprehensive set of salivary gland genes supported by enriched expression; (3) apparent absence of members of the IMD innate immune defense pathway; and (4) developmental- and sex-specific expression analyses of genes associated with progression from larvae to adulthood through neometaboly, a distinct form of maturation differing from either incomplete or complete metamorphosis in the Insecta.Conclusions Analysis of theF. occidentalisgenome offers insights into the polyphagous behavior of this insect pest that finds, colonizes, and survives on a widely diverse array of plants. The genomic resources presented here enable a more complete analysis of insect evolution and biology, providing a missing taxon for contemporary insect genomics-based analyses. Our study also offers a genomic benchmark for molecular and evolutionary investigations of other Thysanoptera species.Animal science

    Dominant-negative mutations in human IL6ST underlie hyper-IgE syndrome

    Get PDF
    Autosomal dominant hyper-IgE syndrome (AD-HIES) is typically caused by dominant-negative (DN) STAT3 mutations. Patients suffer from cold staphylococcal lesions and mucocutaneous candidiasis, severe allergy, and skeletal abnormalities. We report 12 patients from 8 unrelated kindreds with AD-HIES due to DN IL6ST mutations. We identified seven different truncating mutations, one of which was recurrent. The mutant alleles encode GP130 receptors bearing the transmembrane domain but lacking both the recycling motif and all four STAT3-recruiting tyrosine residues. Upon overexpression, the mutant proteins accumulate at the cell surface and are loss of function and DN for cellular responses to IL-6, IL-11, LIF, and OSM. Moreover, the patients’ heterozygous leukocytes and fibroblasts respond poorly to IL-6 and IL-11. Consistently, patients with STAT3 and IL6ST mutations display infectious and allergic manifestations of IL-6R deficiency, and some of the skeletal abnormalities of IL-11R deficiency. DN STAT3 and IL6ST mutations thus appear to underlie clinical phenocopies through impairment of the IL-6 and IL-11 response pathways

    Introducing FACETS, the Framework Application for Core-Edge Transport Simulations

    No full text
    The FACETS (Framework Application for Core-Edge Transport Simulations) project began in January 2007 with the goal of providing core to wall transport modeling of a tokamak fusion reactor. This involves coupling previously separate computations for the core, edge, and wall regions. Such a coupling is primarily through connection regions of lower dimensionality. The project has started developing a component-based coupling framework to bring together models for each of these regions. In the first year, the core model will be a 1 1/2 dimensional model (1D transport across flux surfaces coupled to a 2D equilibrium) with fixed equilibrium. The initial edge model will be the fluid model, UEDGE, but inclusion of kinetic models is planned for the out years. The project also has an embedded Scientific Application Partnership that is examining embedding a full-scale turbulence model for obtaining the crosssurface fluxes into a core transport code

    First results from core-edge parallel composition in the FACETS project

    No full text
    FACETS (Framework Application for Core-Edge Transport Simulations), now in its second year, has achieved its first coupled core-edge transport simulations. In the process, a number of accompanying accomplishments were achieved. These include a new parallel core component, a new wall component, improvements in edge and source components, and the framework for coupling all of this together. These accomplishments were a result of an interdisciplinary collaboration among computational physics, computer scientists, and applied mathematicians on the team
    corecore