2,591 research outputs found

    Occurrence and Behavior of Juvenile Red Snapper, Lutjanus campechanus, on Commercial Shrimp Fishing Grounds in the Northeastern Gulf of Mexico

    Get PDF
    Red snapper, Lutjanus campechanus, is subject to significant overfishing in U.S. Gulf of Mexico waters, and regulations are being implemented to reduce fishing mortality and restore them to a 20% spawning potential ratio by the year 2009. One source of mortality that must be reduced to achieve this goal is the incidental capture ofjuvenile red snappers in shrimp, Penaeus spp., trawls. NOAA's National Marine Fisheries Service is conducting research to develop shrimp trawl modifications to reduce the snapper bycatch. An important part of this research is the study of juvenile red snapper behavior on commercial shrimp grounds and in relation to trawling gear. An area of high juvenile red snapper abundance was identified off the coast of Mississippi. Most snappers were observed around structures or objects on the bottom which they appeared to use for refuge or orientation. Those ranging over barren bottom had no apparent point of orientation. When encountered by shrimp trawls, most juvenile snappers rose above the trawl footrope and fell back into the trawl. These observations have directed research toward modifying shrimp trawls to release juvenile red snappers after entry, rather than preventing them from entering a shrimp trawl

    Construction and Operation of a Two-place Diver's Sled

    Get PDF
    Fisheries gear researchers have employed scuba diver-operated sleds to evaluate towed fishing systems since the early 1950's. One of the earliest sled designs was a converted Stokes litter in which two divers sat tandem with the forward diver operating the diving controls (Sand, 1956). The litter was relatively easy to maneuver and provided a comfortable platform for observing operational fishing gear. However, the use of underwater photographic equipment to document gear performance was difficult due to the limited mobility of the observer-cameraman

    The Fish Funnel: A Trawl Modification to Reduce Fish Escapement

    Get PDF
    In the Gulf of Mexico there is a need to assess the potential of underutilized fish resource stocks before a commercial fishery develops. Standard sampling trawls used in the Gulf are ineffective for sampling the resource, so larger, high opening, bottom trawls have been introduced. The larger trawls are more effective, but most of the faster swimming fish species are able to escape these nets, especially during haul back. To reduce fish escapement, webbing panels, attached inside the trawls ahead of the cod ends, were tested. Initial tests were conducted with two single panel designs--a fish flap and a "floppa." Neither design reduced fish escapement. The floppa distorted the trawl webbing and actually increased fish escapement. A multi-panel conical funnel design (the fish funnel) was tested and found to increase fish retention by trapping the fish after they passed through it. When used in combination with a technique known as pulsing the trawl, the fish funnel substantially increased trawl catch rates with no indication of fish escapement

    Saving Schoodic: A Story of Development, Lost Settlement, and Preservation

    Get PDF
    Remote, isolated, and nearly barren Schoodic Point, now the easternmost part of Acadia National Park, was long bypassed by early explorers and settlers. It might have seemed destined to remain deserted, a candidate for coastal parkland preservation in the twentieth century. But like such distant outposts as Vinalhaven, Swan’s, and Ironbound islands, Schoodic in the nineteenth century was overtaken by extensive land development, logging, and settlement by fishermen farmers. Eventually its proximity to Bar Harbor made it a target for vacation resort cottages. Yet Schoodic’s peninsular ecology and elements of its social circumstances helped it escape such development in favor of land preservation and tourism. Allen Workman, a retired college textbook editor, has summered next to Schoodic Point since 1946. He is a member of the Historical Societies of Winter Harbor and Gouldsboro

    Geochemical characterization of endmember mantle components

    Get PDF
    Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution June 2005This thesis uses trace elements and radiogenic isotope tracers to define elemental abundances in reservoirs of the Earth's mantle, including EM2 (the Enriched Mantle 2), as seen in the Samoan hotspot track, and DMM (the depleted upper mantle), which is sampled at mid-ocean ridges. Together these components comprise up to -50% of the total mantle mass. Much of the mantle's chemical heterogeneities are suspected to originate by either the removal of mass from the mantle (in the case of DMM) or the addition of mass to the mantle through subduction zones (in the case of EM2). We show that DMM represents mantle that 1) has been previously depleted by 2-3% melt removal, 2) mass-balances well with the continental crust, 3) has only 15% of the radiogenic heat production in primitive upper mantle and 4) can generate present-day ocean crust by 6% aggregated fractional melting. EM2 is classically interpreted as mantle material enriched in trace elements through the ancient, subduction-zone recycling of terrigenous sediments; here we show this model is unlikely and provide two other working hypotheses. The first is recycling of melt-impregnated oceanic lithosphere; the second is recycling of a mantle wedge impregnated with melt from a subducting oceanic plate.Very generous financial support for this thesis has been provided by WHO17s Academic Programs Office, NSF grants 8 1903800,80489100 and 82591700 to Stan Hart and the Cole Ocean Ventures Fund

    Configurations and relative efficiencies of shrimp trawls employed in southeastern United States waters

    Get PDF
    Common shrimp trawl designs employed in the southeastern United States shrimp fishery are the flat, balloon, semiballoon, jib, and super X-3. Recent innovations in trawl design and rigging, including the twin trawl rigging and tongue trawl design, have improved the efficiency of shrimp trawling gear. A description of the construction techniques for the different designs indicate differences which affect gear performance. Measurements of horizontal spread and vertical opening for 76 trawl configurations indicate the relative efficiencies of the different designs. Maximum horizontal spreading efficiency was achieved by the "twin" and "tongue" trawl designs followed by the super X-3, jib, balloon, and semiballoon designs. Designs having the greatest vertical openings were the tongue and flat trawl designs followed by the semiballoon. Maximum total gape dimension was demonstrated by the "Mongoose" tongue trawl. Comparison of trawl spreading efficiency and door area to headrope length ratio indicates that a range of 70-80 in square (per door) of door area is required for each foot of trawl headrope length for maximum efficiency with conventional trawl designs and 66-75 in square per foot of headrope for tongue trawl designs. (PDF file contains 18 pages.

    X-Ray Imaging Study

    Get PDF
    The space environment in which the Space Station Freedom and other space platforms will orbit is truly a hostile environment. For example, the currently estimated integral fluence for electrons above 1 Mev at 2000 nautical miles is above 2 x 1O(exp 10) electrons/sq cm/day and the proton integral fluence is above 1 x 10(exp 9) protons/sq cm/day. At the 200 - 400 nautical miles, which is more representative of the altitude which will provide the environment for the Space Station, each of these fluences will be proportionally less; however, the data indicates that the radiation environment will obviously have an effect on structural materials exposed to the environment for long durations. The effects of this combined environment is the issue which needs to be understood for the long term exposure of structures in space. At the same time, there will be substantial potential for collisions between the space platforms and space debris. The current NASA catalogue contains over 4500 objects floating in space which are not considered payloads. This debris can have significant effects on collision with orbiting spacecraft. In order to better understand the effect of these hostile phenomena on spacecraft, several types of studies are being performed to simulate at some level the effect of the environment. In particular the study of debris clouds produced by hypervelocity impact on the various surfaces anticipated on the Space Station is very important at this point in time. The need to assess the threat of such debris clouds on space structures is an on-going activity. The Space Debris Impact facility in Building 4612 provides a test facility to monitor the types of damage produced with hypervelocity impact. These facilities are used to simulate space environmental effects from energetic particles. Flash radiography or x-ray imaging has traditionally provided such information and as such has been an important tool for recording damage in situ with the event. The proper operation of the system can provide much useful information with respect to parametric analysis of the hypervelocity experiment. The following report outlines the procedures developed to optimize the operation of the x-ray imaging system and its operational characteristics
    corecore